

 Advanced Micro Devices

Couchbase Tuning Guide for

AMD EPYC™ Processor Based

Servers

 Publication # 56477 Revision: 0.7
 Issue Date: January 2019

© 2019 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

Linux is a registered trademark of Linus Torvalds.

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 Contents 3

Contents

Chapter 1 Introduction .. 5

1.1 Challenges Involved in Tuning Couchbase ... 5

Chapter 2 BIOS Settings ... 6

Chapter 3 Linux Optimizations .. 7

3.1 Memory Subsystem ... 7

3.2 Storage subsystem .. 8

3.3 Network Subsystem ... 10

3.4 CPU Configuration .. 11

3.5 Example configuration files RHEL 7.5 Server .. 11

Chapter 4 Couchbase Settings .. 13

Appendix A: References .. 16

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

4 Revision History

Revision History

Date Revision Description

January 2019 0.7 Initial NDA release.

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 5

Chapter 1 Introduction

Couchbase Server is an open source, multi-model NoSQL distributed database that incorporates a

JSON document base and key-value store. Couchbase implements “memory-first architecture” to

provide low latency data management for large-scale to deliver consistent high performance,

availability and scalability for enterprise web, mobile, and Internet of Things applications.

Couchbase is straightforward to deploy and manage. Each Couchbase Server node consists of

completely identical software, drastically simplifying automation. The entire cluster is managed

through a single administrator console that offers single-click cluster expansion and rebalancing.

Couchbase Server replicates data across multiple nodes to support failover. It also provides a

comprehensive Management UI to visualize, monitor, and manage the individual nodes of the

cluster as well as overall cluster status and statistics.

Starting from a few settings on the BIOS level, this tuning guide will provide suggestions as to

how to tune various components of the Operating System in such a way that it optimizes

Couchbase for best performance and discuss few settings in Couchbase Server to get the best out

of it.

1.1 Challenges Involved in Tuning Couchbase

It is important to recognize that out-of-the-box Couchbase is already a very fast system, it buffers

a lot of I/O in memory, auto-tunes itself by allocating threads based on number CPUs or the

amount of disk space available. Couchbase already has facilities for moving data between

memory and disk and letting the Operating System to do those tasks under Couchbase is a bad

thing. Likewise, there are several sysctl tunable parameters in Linux kernel at multiple layers,

modules, calls and functions for I/O, CPU, Memory, Storage, Networking to make Operating

System work nicely towards best performance out of Couchbase Server.

The sizing of Couchbase Server cluster is another big topic, very critical to its overall stability and

performance, is not covered in this tuning guide. While there are obviously many variables, the

main point is this: You need to evaluate the overall performance and capacity requirements for

your workload and dataset, and then divide that into the hardware and resources you have

available. Your application wants the majority of reads to come out of the cache, and to have the

I/O capacity to handle the writes. There needs to be enough capacity in all areas to support

everything the system is doing while maintaining the required level of performance.

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

6

Chapter 2 BIOS Settings

One way to maximize a server's performance is to look into the BIOS settings to configure the

server towards maximum system performance, as the default BIOS (factory) settings might favor

saving power for a balanced performance. For our testing, we used a Dell R6415 which is a single

socket 1U server. Not all platform providers will use the same nomenclature for settings, so we

will describe the general setting as well as the Dell specific one when appropriate. Most server

platform providers have a baseboard management controller (BMC) onboard that allows for

remote configuration of the platform. For Dell, this device is called iDRAC. The iDRAC

provides both a web interface and command line interface that allows administrators to perform

remote management tasks.

From iDRAC web interface > Configuration > BIOS Settings

See “Memory Population Guidelines for AMD EPYC Processors” for details on how the EPYC

7xx1 series processors memory channels operate. With channel interleaving the two memory

channels on each die will be interleaved, and there will then be 1 NUMA domain per die. This will

generate 4 NUMA domains per socket. It is also important to make sure DDR is running at

expected speed.

Memory Settings

Memory Interleaving is set to Channel Interleaving

For our setup, the system Memory Speed is at 2400MHz. Each processor core supports up to two

logical processors. If this option is set to Enabled, the BIOS displays all the logical processors.

This option is enabling Symmetric Multi-Threading (SMT). Prefetch settings are Enabled by

default.

Processor Settings

Logical Processor (SMT): Enabled

Hardware Prefetcher: Enabled

Software Prefetcher: Enabled

Having all p-states and c-states enabled will allow for optimum performance. For Dell, we do this

by enabling OS DBPM Control. Turbo mode allows processor cores to run faster than their base

operating frequency.

→ System Profile Settings

System Profile → Custom

CPU Power Management → OS DBPM

Memory Frequency → Maximum Performance

Turbo Boost → Enabled

C States → Enabled

https://developer.amd.com/wp-content/resources/56301.pdf

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 7

Chapter 3 Linux Optimizations

All data in Couchbase passes through a caching layer, so Couchbase’s performance is very

sensitive to cache hit ratios. Couchbase’s documentation suggests that the cache miss ratio is a

key performance monitoring variable. Tuning the Linux operating system’s memory and storage

subsystems provide an increase in Couchbase performance.

3.1 Memory Subsystem

If sufficient memory is provisioned for Couchbase per Sizing guidelines for the Couchbase

cluster, Couchbase takes care of moving data between memory and disk to stay away from

running out of memory. Swapping to disk hurts Couchbase performance, so to reduce the

likelihood of swapping as much as possible set vm.swappiness to 1.

Transparent huge pages is enabled by default in Red Hat Enterprise Linux 7.5, it can cause very

long delays for allocating new memory in the system, reshuffling pages in the background into

large pages, and hence Couchbase’s recommendation to disable it.

Transparent huge pages can be disabled by using the following init script:
cat disable-thp

#!/bin/bash
BEGIN INIT INFO
Provides: disable-thp
Required-Start: $local_fs
Required-Stop:
X-Start-Before: couchbase-server
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Disable THP
Description: disables Transparent Huge Pages (THP) on boot
END INIT INFO

case $1 in
start)
 if [-d /sys/kernel/mm/transparent_hugepage]; then
 echo 'never' > /sys/kernel/mm/transparent_hugepage/enabled
 echo 'never' > /sys/kernel/mm/transparent_hugepage/defrag
 elif [-d /sys/kernel/mm/redhat_transparent_hugepage]; then
 echo 'never' > /sys/kernel/mm/redhat_transparent_hugepage/enabled
 echo 'never' > /sys/kernel/mm/redhat_transparent_hugepage/defrag
 else
 return 0
 fi
;;

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

8

esac

cp disable-thp /etc/init.d/disable-thp
chmod 755 /etc/init.d/disable-thp
service disable-thp start
chkconfig disable-thp on

At present, Couchbase does not implement any NUMA related optimization, and the Couchbase

recommendation is to disable NUMA in the BIOS or disable it for Couchbase.

NUMA imbalance across nodes can be corrected by modifying the couchbase-server startup script,

prepend the daemon variable with numactl –interleave all to enable NUMA

interleaving. numactl --interleave all informs the OS to round-robin the memory

allocations between all NUMA nodes and prevent the imbalance in memory allocation. Also,

when the NUMA is enabled, set vm.zone_reclaim_mode=0.

yum install numactl

cat /usr/lib/systemd/system/couchbase-server.service

…

…

[Service]

SyslogIdentifier=couchbase

User=couchbase

Type=simple

WorkingDirectory=/opt/couchbase/var/lib/couchbase

LimitNOFILE=70000

LimitMEMLOCK=infinity

ExecStart=numactl –interleave all /opt/couchbase/bin/couchbase-server -- -

noinput

ExecStop=/opt/couchbase/bin/couchbase-server -k

…

…

3.2 Storage subsystem

The guideline for storage is to use higher RPM local storage. SSD is a great choice, however, if

SSDs can’t be used for everything, take advantage of Couchbase’s ability to segregate data storage

from index storage and deploy the data on the hard drives and deploy the indexes on the SSD for

the best outcome. In general, provisioning separate disks for data and indexes yields better results.

Make sure the storage controller is battery backed, to take advantage of some of those filesystem

mount options that offer big performance gains.

At the virtual file system layer, ext4 is the default in most Linux systems, xfs is better alternative

for Couchbase largely because it is slightly better for append-only workloads.

The filesystem mount option, barrier controls the ordering of writes to disks. For battery-backed

storage controllers, it is safe to disable barriers to reap big performance boost from disk I/O.

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 9

Filesystem mount options /etc/fstab:

EXT4 : noatime, barrier=o, data=writeback

XFS: noatime, nobarrier

The amount of dirty memory at which the background kernel flusher threads will start writeback

into the disk and its frequency (interval) can be tuned with the following settings:

Set the limit for dirty bytes in the page cache
sysctl -w vm.dirty_background_bytes=104857600

sysctl -w vm.dirty_bytes=209715200

Set the max time for dirty pages
sysctl -w vm.dirty_writeback_centisecs=100

sysctl -w vm.dirty_expire_centisecs=200

Tune VFS cache reclaim
sysctl -w vm.vfs_cache_pressure=50

Choosing the correct scheduler algorithms for Disk I/O can provide big performance gains. The

‘deadline scheduler’ behaves like a FIFO but does basic reordering and merging within the

scheduler queue. This guarantees a maximum latency for any given write that's in its queue.

‘noop’ is another option that is supported but less frequently used.

echo deadline > /sys/block/<dev>/queue/scheduler

nr_requests : The I/O request queue is another place where performance can be improved. This is

the queue that determines how many objects can be reordered prior to them being flushed to the

disk. The longer the queue, the better your ordering of writes and the fewer head movements your

spinning disk is going to encounter when it starts writing to the disk.

echo 1024 > /sys/block/<dev>/queue/nr_requests

Finally make sure that the I/O is aligned on the filesystem down to the physical devices.

Unaligned I/O can result in a compounding number of on-disk writes that any given logical write

to your file system incurs and will hurt I/O performance. Alignment of partitions is more critical

when using SSD and NVMe drives.

Create partition aligned using ‘parted’.

Optimal: Use optimum alignment as given by the disk topology information. This aligns to a

multiple of the physical block size in a way that guarantees optimal performance.

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

10

Example:

fdisk -l /dev/nvme0n1

parted /dev/nvme0n1 mklabel gpt

parted -a optimal /dev/nvme0n1 mkpart primary 0% 50%

parted -a optimal /dev/nvme0n1 mkpart primary 51% 100%

3.3 Network Subsystem

First, setting initial buffer sizes for transmit and receive buffers for the network will decrease the

amount of time after a reboot that it takes for the network to get back to an optimal state for higher

network performance.

Receive Packet Steering (RPS) is used to direct packets to specific CPUs for processing. By

default, on a Linux kernel, all the interrupts for the network are going to be handled by CPU 0.

This could result in artificially creating bottlenecks in the network because all the packets can’t be

processed fast enough.

echo F to the RPS CPUs parameter and allows all CPUs to take part in processing these interrupts

by spreading the load across the system or it can be configured to spread the load across a set of

CPUs in a NUMA node.

cat /sys/class/net/p2p1/device/numa_node 2

echo f > /sys/class/net/device/queues/rx-queue/rps_cpus

set_irq_affinity_cpulist.sh script comes with a Mellanox Driver, and can be used to set CPU

affinity to handle IRQs:

tar -xf MLNX_OFED_LINUX-4.1-1.0.2.0-ubuntu16.04-x86_64.tgz

cd MLNX_OFED_LINUX-4.1-1.0.2.0-ubuntu16.04-x86_64

./mlnxofedinstall --hypervisor --force-fw-update --enable-mlnx_tune –force

/usr/sbin/set_irq_affinity_cpulist.sh

1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 p2p1

Jumbo frame improves Couchbase performance:

ip link set p2p1 mtu 9000

“Linux® Network Tuning Guide for AMD EPYC™ Processor Based Systems” is a guide that can

be leveraged for configuring the network for systems in a Couchbase cluster. Following the

principles outlined in the guide, make sure to tune the size of the TX and RX rings, change the

number of interrupts queues to match the cores on the NUMA node which the NIC is collocated,

and pin those interrupts to the correct cpu cores. The iperf utility can be used to stress test the

network infrastructure to ensure that it is setup properly. It is recommended to follow the tuning

guide especially in the setting for the iommu for the O/S, as this will have significant impact on

system performance. This is normally done by setting the iommu to pass-through mode by adding

https://developer.amd.com/wp-content/resources/56224_1.10.pdf

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 11

the kernel parameter, “iommu=pt,” on the kernel boot line (for RHEL 7.5 this is done by

modifying the /etc/default/grub file and running grub2-mkconfig utility).

3.4 CPU Configuration

Ensure the performance governor is set to run all cores. On RHEL 7 view the frequency

governors available using cpupower frequency-info –governor command. To set the

frequency governor use cpupower frequency-set –governor performance.

Generally, the tuned-adm throughput-performance profile works best for Hadoop workloads, and

this will set the governor to performance.

Disable CC6:
cpupower -c all idle-set -d 2

3.5 Example configuration files RHEL 7.5 Server

/etc/default/grub

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap

rhgb quiet iommu=pt"

/etc/rc.local

cpupower -c all idle-set -d 2

ethtool -G p2p1 rx 4096 tx 4096

/usr/sbin/set_irq_affinity_cpulist.sh

1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 p2p1

echo “deadline” > /sys/block/${a}/queue/scheduler

echo 1024 > /sys/block/${a}/queue/nr_requests

cat /etc/sysctl.conf

vm.zone_reclaim_mode=0

vm.swappiness=1

vm.dirty_background_bytes=209715200

vm.dirty_bytes=104857600

vm.dirty_writeback_centisecs=100

vm.dirty_expire_centisecs=200

vm.vfs_cache_pressure=50

vm.overcommit_memory=0

net.ipv4.tcp_sack = 1

net.core.netdev_max_backlog = 25000

net.core.rmem_max = 2147483647

net.core.wmem_max = 2147483647

net.core.rmem_default = 33554431

net.core.wmem_default = 33554432

net.core.optmem_max = 33554432

net.ipv4.tcp_rmem =8192 33554432 2147483647

net.ipv4.tcp_wmem =8192 33554432 2147483647

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

12

net.ipv4.tcp_low_latency=1

net.ipv4.tcp_adv_win_scale=1

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv4.conf.all.arp_filter=1

net.ipv4.tcp_retries2=5

net.ipv6.conf.lo.disable_ipv6 = 1

net.core.somaxconn = 65535

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 13

Chapter 4 Couchbase Settings

The single most important parameter for tuning Couchbase is the amount of memory allocated to

it and it is the best way to prevent disk I/O bottlenecks.

Replication:

Data replication is distributed throughout the Couchbase cluster to prevent a single point of

failure. Data replication is configurable on a bucket-level and node-basis. Couchbase supports up

to 3 replicas (which means up to 4 copies of data). Please note the difference in the terminology in

Couchbase in contrast to Hadoop. In Hadoop, replication set to 3, mean a total of 3 copies, but in

Couchbase, it refers only to number of replicas, excluding active data.

Disk Priority:

To allocate disk I/O resources differently between the workloads, any buckets that require higher

disk I/O access than others, this sets disk priority to high:

curl -v -X POST -u Administrator:password \

 http://10.1.1.101:8091/pools/default/buckets/usertable -d

'threadsNumber=8'

Data Ejection Watermarks:

Couchbase uses as much of the allocated memory as possible for caching data in memory. If there

is more data than the allocated memory, Couchbase starts ejecting data from memory so it just

exists on disk. To tune at which point the ejection occurs, which is governed by a series of

watermarks:

The default high watermark is 85%, to change to 90%:

/opt/couchbase/bin/cbepctl 10.1.1.104:11210 -b usertable -p password\

 set flush_param mem_high_wat 90%

Memory Optimized (MOI) vs Standard Global Secondary Indexes (GSI)

Indexes are created to lower query latencies and keeping indexes in memory reduces latencies a

significantly! MOI is designed for lower latency and highest throughput needs and MOI requires

machines with larger memory to keep the index in RAM. Standard GSI can spill to disk when

memory runs out. IO Subsystem performance becomes extremely important for standard GSI to be

able to perform well. Unlike standard GSI, high performance IO subsystem is not required for

MOI. As MOI runs at in-memory speeds, initial and ongoing indexing times are faster with MOI

compared to Standard GSI.

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

14

Allocating higher CPU resources for Index service:

Though all Services (data, query, index, search etc) in Couchbase can be run on all nodes,

Couchbase recommend that individual workloads run on their own set of nodes. This affords

workload isolation and independent scaling. Also, hardware can be apportioned suitably based on

the nature of the workload. For example, indexes are generally memory intensive and queries are

CPU intensive. Independent scalability for best computational capacity per service is achieved by

the architectural nicety that Multi-Dimensional-Scaling(MDS) offers us.

If all services are run on the same server, and to allocate more CPU resources to Index service:

curl -X POST -u 'Administrator:password'

http://10.1.1.101:9102/settings -d

'{"indexer.settings.max_cpu_percent":1600}'

Fragmentation and Compaction:

Couchbase uses an append-only file structure and every so often in order to clean up dead bytes it

needs to compact the disk data structures. Compaction impact Disk I/O, and to attenuate the

impact, setting fragmentation threshold to a higher percentage would mean that compaction runs

less frequently.

To specify percentage of disk fragmentation when the bucket compaction is triggered:
couchbase-cli setting-cluster -c 192.168.0.1:8091 -u Administrator -p

password \

 --compaction-db-percentage=70

To Enable auto compaction starting at 2:00 AM (during off-peak period)
couchbase-cli setting-cluster -c 192.168.0.1:8091 -u Administrator -p

password \

 --compaction-period-from=2:00

REST endpoints available to view settings:

Bucket:
curl http://10.1.1.101:8093/admin/settings -u

'Administrator:password' | jq

Index:
curl http://10.1.1.101:9102/settings -u 'Administrator:password' | jq

56477 Rev. 0.7 January 2019 Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

 15

To collect all Couchbase logs as zip file for troubleshooting by Couchbase experts:

/opt/couchbase/bin/cbcollect_info -v name_of_file.zip

Couchbase Tuning Guide for AMD EPYC™ Processor Based

Servers

56477 Rev. 0.7 January 2019

16

Appendix A: References

https://developer.couchbase.com/documentation/server/3.x/admin/UI/ui-monitoring-statistics.html

https://docs.couchbase.com/server/5.5/install/sizing-general.html

https://www.kernel.org/doc/Documentation/sysctl/vm.txt

https://blog.couchbase.com/indexing-best-practices/

https://docs.couchbase.com/server/4.1/install/install-ports.html

https://blog.couchbase.com/faster-indexing-and-query-with-memory-optimized-global-secondary-

indexes-gsi-part-ii/

https://www.slideshare.net/Couchbase/tuning-couchbase-server-the-os-and-the-network-for-

maximum-performance-couchbase-connect-2015

https://docs.couchbase.com/server/5.5/install/install-production-deployment.html

https://developer.couchbase.com/documentation/server/3.x/admin/UI/ui-monitoring-statistics.html
https://docs.couchbase.com/server/5.5/install/sizing-general.html
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://blog.couchbase.com/indexing-best-practices/
https://docs.couchbase.com/server/4.1/install/install-ports.html
https://docs.couchbase.com/server/5.5/install/install-production-deployment.html

	Chapter 1 Introduction
	1.1 Challenges Involved in Tuning Couchbase

	Chapter 2 BIOS Settings
	Chapter 3 Linux Optimizations
	3.1 Memory Subsystem
	3.2 Storage subsystem
	3.3 Network Subsystem
	3.4 CPU Configuration
	3.5 Example configuration files RHEL 7.5 Server

	Chapter 4 Couchbase Settings
	Appendix A: References

