
nDisplay Documentation
What’s in this document:

Setup

Further Knowledge

Pitfalls

Setup
This setup guide will cover creating a nDisplay working environment with one editor

node, one render node and a remote interface. One of the most compelling features of
nDisplay is the ability to edit scenes in real time from multiple sources with relative ease, this
gives maximum flexibility to directors, DOPs and other creative personnel on set to interact
with the scenes with minimal disruption to shoots. This is added to by the ability to expose
any variable to a web interface available to any device with a browser on the network.

1. Setting up a scene from scratch (nDisplay configuration).
2. Configuring the switchboard.
3. Joining a multi-user session.
4. Setting up a remote interface.

1. Setting up a scene from scratch (nDisplay configuration)

Implementing an nDisplay scene can be done relatively simply, in this example I’ll
discuss setup such any UE4 scene provided can be used with nDisplay. So to get started
create a new games project with the in camera VFX template. Check the list of required
plugins here, but the main ones to ensure are enabled are:

● nDisplay
● Live Link over nDisplay
● Remote Control API
● Remote Control Web Interface

https://drive.google.com/file/d/1x7s_C09leAnXEVSG9vqt9hCLjK6auLJf/view?usp=sharing


With these plugins enabled and active, create an nDisplay configuration file (RC in content
browser > nDisplay > nDisplay Config).

Select the option to create a new nDisplay configuration file and press finish. Open this to
find the nDisplay Configuration Editor page, new in UE4.27, edits to all things to do with the
LED wall’s virtual representation can be made here.



Start by removing the default wall mesh generated with the new config file and add a
ICVFXCamera component. Add an nDisplayScreen or a static mesh component to the
config, if using static mesh set it to either a plane, or a model representative of the wall in the
studio. If using a basic unreal plane here be sure to create a copy of the static mesh (As the
plane may be in use elsewhere and cannot be saved) and enable the Full Precision UV
mode.

Position the mesh or screen relative to where the origin camera tracking will be (0,0,0 in the
viewport will be 0,0,0 for the tracking source). Set the default view point to a sensible
position central to the screen.



Now in the cluster section create a new viewport.

Set the parent node to the IP address of the computer which shall be rendering the image to
the wall. Set the resolution preset which will be used by the backplate of the LED wall (I’ve



set it to 1920x1080 here but the wall at the stage is 3456x1344). It’s worth noting as well that
if the LED wall is acting as the 2nd monitor on the node: 1) Fullscreen won’t work properly 2)
The window size specified here must include the dimensions of the first monitor and the
relative OS position of the LED wall from the first monitor must be specified in the region, for
example: If the first monitor is 1920x1080 and the wall is 3456x1344 the window and
viewport settings would need to look like this:

In Node_0 (or whatever you call the render machine)

In VP_0 (or whatever you call the viewport)



In the projection policy section in
the viewports details set the type to mesh and then specify the static mesh.

Your config file should now look something like this:

Compile and save this set up.

It’s worth noting that your life can be made easier by lining up the origin of your tracking
source with the origin of the config file, for example in the Guildford studio we placed the
Optitrack origin against the exact center of the bottom of the LED wall, so the set up shown
above would align the worlds if the tracked camera was parented and zeroed with the config
instance in the scene. Another example is when using NCam tracking we align the origin
with the bottom right corner of the wall, so a setup like this would be more useful here:



The basics of the configuration are now done and ready to deploy to a scene.

Drag the nDisplay config file into the scene and set the cine camera variable of the ICVFX
camera component to a cine camera in the scene to select the camera as the chosen
perspective. This will be the tracked camera but I won’t go into setting up camera tracking in
this write up.



Now to make this nDisplay config work for any UE4.27 project you wish to use it with, I’ll do
this by creating a simple plugin. The purpose of the plugin is to ensure the engine
environment is suitable for nDisplay (correct plugins are enabled), and then to provide
premade content which can be dropped directly into the scene.

Firstly navigate to the plugins page and select the “new plugin” button

Setup the new plugin with whatever information you want and hit create plugin.

This Plugin will now be available in the plugins menu. All of the content previously created
be added to the plugin along with the list of dependent plugins listed at the start of this
section. Once complete this plugin can be added locally or to the root engine plugins folder
so it appears in any new UE4.27 project you make.



2. Configuring the switchboard

So the next step of the process is to set up a switchboard. This is Unreals external launcher
and control hub for nDisplay cluster projects. From here you can launch a project across
multiple machines.

With the plugin enabled in your project you should be able to see it in the main toolbar,
select this to open the switchboard (the first time a computer uses this it will need to
download some elements such as python and may take a while).

Once that’s all installed a timesaving idea could be to create a desktop shortcut to the
switchboard launcher so an UE4 editor doesn’t need to be opened each time a workload is
launched across the cluster (we’ve done this on our FOH editor in Guildford), the required
WBF can be found at this path:
PathToUE_4.27ProgramFolder\Engine\Plugins\VirtualProduction\Switchboard\Source\Switch
board\switchboard.bat

Back in the editor (or from the new shortcut) launch the switchboard and select your current
project (will be self populated if launching from the editor) then press OK.

The switchboard creates .json configuration files with all the information it needs about each
node and communicated over the network using OSC messaging.



Once launched the switchboard will open to this page. First thing to get started with this is to
add an editor device to the switchboard:

Enter the name and the ip address of the machine to be used as the live editor node,
something like this should then be visible:



Open up the settings now and find the editor node settings, here the unicast endpoint needs
to be set, this is the same as setting it in the project settings but setting it here can save time
when syncing projects across multiple machines. The unicast endpoint must be set to
receive both LiveLink data and enabling multi-user sessions.

Now setup the nDisplay node:



If launching from the project, the populate button will automatically locate config files and
add them to the drop down, if launching switchboard from the desktop shortcut this will need
to be manually located. Once this is set ensure the IP matches that of the machine to be
used as the render node and set the unicast endpoint in the same way as the editor node.

Now set up the switchboard listener, again this can either be done via the editor, or by
locating the SwitchboardListener application at:

PathToUE_4.27ProgramFolder\Engine\Binaries\Win64\SwitchboardListener.exe
Then create a shortcut and add the launch parameter “-ip=[ipInterface]”, this opens the
specified interface to receive messages from the machine running the switchboard.

Repeat this on each machine that you wish to launch the project with via switchboard with
their own ip addresses (if not already done this would be a good time to assign static ip
addresses to the network adapter on the machine to avoid repeating these steps for each
project).



With that done a connection between the switchboard and each machine should be
establishable

Once connected the projects should be launchable, resulting in an instance of the Unreal
Editor opening on the editor node and a nDisplay project running on the render node.

The final step is bridging these two instances of the project together via a multi-user session.
Back in the switchboard open up the settings again and make sure the Auto Join option in
the multi-user session section is enabled.

Any changes made by the editor node should now be visible in real time on the render
node, to save changes made in this state persist any changes via the source control button.



Bosh done.

Further Knowledge
● Using multiple render nodes

If setting up multiple render nodes to drive the wall make the following changes to the
nDisplay setup (Assuming the physical hardware has been set up correctly to drive one
vertical half of the wall with each node via the controller input and/or video matrix):

Duplicate the nDisplay config file and open it up. The idea here is to create 2 static meshes
to represent the wall and drive each half with a cluster node. So in the new config, replace
the “full wall” model with a “half wall” model and duplicate, adding a “left” and “right” suffix to
the relative static meshes.

Now adjust the region of the existing render node to have half its current width, do this easily
by typing “/2” to the end of the width component of the region variable.



The image now in the OutputMapping window shouldn’t look stretched anymore.

Now create a new cluster node and set it up exactly how the first one was set up but with a
couple of key differences:

● Make sure the IP address is targeting the correct render node.
● Target the other static mesh in the projection policy.
● Duplicate dimensions of the region but add in the width to the x offset.



Now in the switchboard remove any old nDisplay devices, create a new one and locate the
new multi node config file. This should automatically populate the nDisplay devices for all
nodes in the cluster (in this case just the two).

Once the project is fully synchronised across all cluster nodes the project can be launched.

Pitfalls
● Debugging

The only drawback singular project being edited from multiple sources is potential
bottleknecking when a debugging session is required. This could be resolved by isolationing
a project and workstation specifically for debugging, done most effectively by source control
such as perforce which is not currently implemented in our workflow.

● Coordination

The ability to have multiple users affecting a project in real time also poses the threat of
unintentional tampering with systems put in place by other users. The larger the input pool to
any system the more likely mistakes and uncoordinated processing will occur, we currently



don’t have a structured plan for how the Unreal operators interact with the project in the lead
up to and during a shoot.


