DTrack Plugin for Unreal Engine 4/5

GitHub - ar-tracking/UnrealDTrackPlugin: ART DTrack interface for Unreal Engine

This is a plug-in for the Unreal Engine with the purpose of native integration of

the Advanded Realtime Tracking DTrack tracking solutions. It injects data into the
engine through LivelLink. Data can be accessed through Blueprint or C++. The plugin
currently supports the DTrack bodysdand flystickear2 as well as the finger

tracking g1 data format.

Prerequisites

e Unreal Engine 4 (4.23 or later), Unreal Engine 5 (5.0 or later)
e Windows

e Microsoft Visual Studio. See the Unreal documentation for selecting and
installing the correct version.

Installation

Preparation

o The plugin is prepared to run with Unreal Engine 5. If you want to use it with
Unreal Engine 4, you have to manually remove the
entry "LiveLinkAnimationCore", from the
file Source\DTrackPlugin\DTrackPlugin.Build.cs.

Install into the global Engine plugin folder

o Compile the plugin manually:
<UEDir>\Engine\Build\BatchFiles\RunUAT.bat BuildPlugin -
Plugin=\Path\to\DTrackPlugin.uplugin -TargetPlatforms=Win64 -
Package=<OutDir> -Rocket -VS20XY
Here -VS20XY designates the Visual Studio version chosen above (e.g. -
VS2022).

e Copy the folder <OutDir> to <UE4Dir>\Engine\Plugins\DTrackPlugin

Alternatively install into your local project plugin folder

e Open the Unreal Editor and create an Unreal C++ project
e Copy the plugin to <project>\Plugins\DTrackPlugin
o Compilation then takes place automatically when starting your Unreal project


https://github.com/ar-tracking/UnrealDTrackPlugin
https://ar-tracking.com/
https://docs.unrealengine.com/5.0/en-US/setting-up-visual-studio-development-environment-for-cplusplus-projects-in-unreal-engine

DTrack Configuration

Room Calibration

For general information about the DTrack room calibration and room adjustment see
the DTrack User Manual. Here we discuss details relevant for use with the Unreal
Engine.

The calibration angle which comes with your ART tracking system defines the
coordinate system layout in your tracking area. It consists of four retroreflective or
active markers mounted onto a L-shaped frame.

The marker in the edge of this L-shape by default designates the origin of the DTrack
coordinate system. When using the Normal calibration mode, the long arm of this L-
shape corresponds to the X axis, the short arm to the Y axis. DTrack coordinates refer
to a right-handed coordinate system, so when the angle is placed flat on the ground
with the markers on top the Z axis points upwards.

You can change orientation and position of the DTrack coordinate system with
respect to the calibration angle via Tracking > Room adjustment in the DTrack Ul.

The plugin transforms a right-handed position of a DTrack 6DoF measurement to a
left-handed Unreal position by inverting the Y axis: ( Xunreat , Yunreat , Zunreat) = ( Xotrack , -
YDTrack 7 zDTrack ) .


https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/calibration-angle.PNG
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DTrack Output Configuration

Via Tracking > Output in the DTrack Ul you can set up IP and port of the host of
your Unreal Editor or application. In the corresponding dialog, you can also enable
the DTrack output types 64, 6df2 and g1.


https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/dtrack-roomcal.PNG
https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/coords-dtrack+unreal.png
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Plugin Usage

See UnrealDTrackSample for a detailed example.

The mapping of Flystick buttons and joystick is listed
in DTrackFlystickinputDevice.cpp within
the DTrackPlugin\Source\DTrackinput\Private directory.


https://ar-tracking.com/
https://www.github.com/ar-tracking/UnrealDTrackSample
https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/dtrack-output.PNG

DTrack Plugin for Unreal Engine 4/5 -
Sample Scene

An Unreal Editor project to demonstrate UnrealDTrackPlugin features.

Installation

Install the Plugin

o Download UnrealDTrackPlugin from Github and follow the installation
instructions there
(Download via Unreal Engine Marketplace is planned for a later point in time)

Configure DTrack

Calibrate or re-adjust your DTrack room coordinate system so that
o the origin is close to the area where you later want to track your ART
targets

o the Z axis points upwards

e See the documentation of UnrealDTrackPlugin and the DTrack User Manual for
more details on room calibration and adjustment.

e Open the DTrack2 Ul and configure your output data stream (Tracking >
Output):
Set the UDP port to 5000, and enable output of &4, 6df2 or g1 depending on
your available hardware.

o Start the DTrack measurement of your bodies and/or flysticks.

Configure the sample project

o Download and copy UnrealDTrackSample into your Unreal Editor project
directory

o Adopt the .uproject file to your Unreal Engine version (e.g.
set "EngineAssociation": "4.27")

o If using Unreal Engine 4 (instead of 5) prepare UnrealDTrackPlugin as
described in UnrealDTrackPlugin

e Open the *.uproject in Unreal Editor and agree to rebuild the project

« Ignore any error complaining that TestMap_BuildData is missing - this file was
removed to reduce project size.
In Unreal Editor click the Build button in the toolbar to rebuild the
map TestMap, then save the map


https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.unrealengine.com/marketplace/en-US/store
https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.github.com/ar-tracking/UnrealDTrackSample
https://github.com/ar-tracking/UnrealDTrackPlugin#Preparation

o In Edit > Plugins search for DTrackPlugin and enable it

e Inthe Window > Live Link (UE4) or Window > Virtual Production > Live
Link (UE5) dialog add the Source DTrack and configure DTrack Settings >
Server Settings

DTrack Live Link Source Configuration

The following screenshots show an example Live Link configuration for DTrack.
Note that the DTrack data stream is split into three Roles:

e a Transform Role for 6DoF data (of standard bodies as well as Flystick bodies),
e a DTrackFlystickinput Role for Flystick button and joystick data,
e aDTrackHand Role for Fingertracking data
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https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-add-dtrack.png
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Transform Role Configuration

In the Editor window, select either the Cone or the Cube. In the Details tab of this
actor, select the component LiveLinkComponentController. In the Live Link section of
this component you will find Role and Live Link Subject this actor is associated with.

For 6D transformations this is always a Transform Role (DTrackFlystickinput Role is
discussed below). Here, the Cone is configured to be controlled by a standard 6DoF
body with DTrack ID 1 (‘DTrack-Body-00'"), the Cube is controlled by a Flystick 6DoF
body with DTrack ID F1 (‘DTrack-FlystickBody-00").

At this point, when you look to the Editor viewport, either Cone or Cube should
already move in sync with corresponding targets tracked by DTrack (if the
Edtior's Viewport Options are set to Realtime).


https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-config-dtrack.png
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DTrackFlystickinput Configuration

UnrealDTrackPlugin maps Flystick buttons and joystick via a custom A.R.T.

Flystick device. Note that UnrealDTrackPlugin can be used with the new Enhanced
Input system (since UE4.26) as well as the 'legacy’ input system (in Edit > Project
Settings > Engine > Input, marked as deprecated in UE5.1).



https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-controller+scene.PNG
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Actions and axis values triggered by the Flystick are then handled by the
Playercontroller FlystickCtrl_BP (in the Content Browser under Content > Blueprints).
This contains a simple script which demonstrates that Flystick data are actually
passed-through by the plugin: The joystick rotates the player camera, and button
presses lead to either jJumps in camera location or a message printed to the screen.


https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/project-settings-input.PNG
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The Level Blueprint of TestMap then associates the PlayerController with the
Pawn MyPawn_BP in the scene.


https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/playercontroller.PNG
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The game mode MyMode_BP uses FlystickCtr[_BP as the Playercontroller class, and is
itself set up as the default game mode used by TestMap.


https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/level-blueprint-pawn+controller.PNG
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Finally you can test this configuration in Play In Editor (PIE) mode.

Fingertracking
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In case you have a Fingertracking set connected to your A.R.T. tracking system, you
can send the corresponding data to your Unreal application just as you did with
standard bodies and Flystick. To use such data in this demo project go to Content >
FingerTracking, select the assets LeftHand_ABP/RightHand_ABP and drop them into

the scene:
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Note that the Unreal hand locations and orientations only correspond to the DTrack
room coordinate system if for both hands in Unreal Editor > Details > Transform all
values for rotation and location are set to 0, and for scale to 1.


https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/hand-scene.png
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To view movement of hands and fingers directly within the scene, enable Play >
Simulate. Alternatively, you can also switch to Play In Editor (PIE) mode.

The asset misc > Retargeter is a Blueprint derived from DTrackLivelLinkRetargetAsset,
which is part of DTrackPlugin. The folders Left and Right contain skeletons and
meshes which are edited versions of the SK_Mannequin. The

assets LeftHand_ABP and RightHand_ABP are AnimationBlueprints associated with the
target skeletons LeftHand_Skeleton and RightHand_Skeleton, respectively. Here,

the Live Link Pose node is associated with Retargeter, and its subject is set to one of
the DTrackHand Role instances configured earlier:
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https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/hand-transform.png
https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/hand-blueprint.png

Preparation of Shipping and Development Builds

The procedure above assumes you manually configure DTrack as a Live Link source
each time you start Unreal Editor. For shipping or developement builds you can
automate this step by first creating a Live Link Preset in the Window > Live

Link dialog:
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Next you apply this preset in the Level Blueprint: Create a variable of type Live Link
Preset and compile the Blueprint. The Details tab then offers you a slot for the default
value, which you set to the saved preset. You then connect an Apply to Client node to
the execution path of the Begin Play event, with the preset as target.


https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-preset.png
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Note: Currently the Flystick (buttons and joystick) to work correctly with packaged
builds requires to first start the game, and then the DTrack measurement. Make sure
that DTrack measurements are stopped before starting the game.

Note: If the project cannot be opened via the Launcher, but only via the Editors file
menu, you presumably have to adjust the .uproject file to the version of your Unreal
Editor. Follow the corresponding installation step in UnrealDTrackPlugin.
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