DTrack Plugin for Unreal Engine 4/5

GitHub - ar-tracking/UnrealDTrackPlugin: ART DTrack interface for Unreal Engine

This is a plug-in for the Unreal Engine with the purpose of native integration of

the Advanded Realtime Tracking DTrack tracking solutions. It injects data into the
engine through LivelLink. Data can be accessed through Blueprint or C++. The plugin
currently supports the DTrack bodysdand flystickear2 as well as the finger

tracking g1 data format.

Prerequisites

e Unreal Engine 4 (4.23 or later), Unreal Engine 5 (5.0 or later)
e Windows

e Microsoft Visual Studio. See the Unreal documentation for selecting and
installing the correct version.

Installation

Preparation

o The plugin is prepared to run with Unreal Engine 5. If you want to use it with
Unreal Engine 4, you have to manually remove the
entry "LiveLinkAnimationCore", from the
file Source\DTrackPlugin\DTrackPlugin.Build.cs.

Install into the global Engine plugin folder

o Compile the plugin manually:
<UEDir>\Engine\Build\BatchFiles\RunUAT.bat BuildPlugin -
Plugin=\Path\to\DTrackPlugin.uplugin -TargetPlatforms=Win64 -
Package=<OutDir> -Rocket -VS20XY
Here -VS20XY designates the Visual Studio version chosen above (e.g. -
VS2022).

e Copy the folder <OutDir> to <UE4Dir>\Engine\Plugins\DTrackPlugin

Alternatively install into your local project plugin folder

e Open the Unreal Editor and create an Unreal C++ project
e Copy the plugin to <project>\Plugins\DTrackPlugin
o Compilation then takes place automatically when starting your Unreal project

https://github.com/ar-tracking/UnrealDTrackPlugin
https://ar-tracking.com/
https://docs.unrealengine.com/5.0/en-US/setting-up-visual-studio-development-environment-for-cplusplus-projects-in-unreal-engine

DTrack Configuration

Room Calibration

For general information about the DTrack room calibration and room adjustment see
the DTrack User Manual. Here we discuss details relevant for use with the Unreal
Engine.

The calibration angle which comes with your ART tracking system defines the
coordinate system layout in your tracking area. It consists of four retroreflective or
active markers mounted onto a L-shaped frame.

The marker in the edge of this L-shape by default designates the origin of the DTrack
coordinate system. When using the Normal calibration mode, the long arm of this L-
shape corresponds to the X axis, the short arm to the Y axis. DTrack coordinates refer
to a right-handed coordinate system, so when the angle is placed flat on the ground
with the markers on top the Z axis points upwards.

You can change orientation and position of the DTrack coordinate system with
respect to the calibration angle via Tracking > Room adjustment in the DTrack Ul.

The plugin transforms a right-handed position of a DTrack 6DoF measurement to a
left-handed Unreal position by inverting the Y axis: (Xunreat , Yunreat , Zunreat) = (Xotrack , -
YDTrack 7 zDTrack) .

https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/calibration-angle.PNG

Foom Calibration ? >

wand length [mm]

410.00

marker distances Room Calibration Set 410 (high) =
A (1-2) [mm]
B (1-4) [mm]
C (1-3) [mm]
height [mm]
coordinate system

Mormal

re-calibration {without angle tool)

Show details

DTrack Calibration Angle DTrack Calibration Angle

DTrack Output Configuration

Via Tracking > Output in the DTrack Ul you can set up IP and port of the host of
your Unreal Editor or application. In the corresponding dialog, you can also enable
the DTrack output types 64, 6df2 and g1.

https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/dtrack-roomcal.PNG
https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/coords-dtrack+unreal.png

P Output Settings ? ot

Channel 1 Channel 2 Channel 3

v active

send to LDP part

my.unreal.host.ip 5000 =

this computer send data divisor

multicast (224.0.1.0 - 239,255,255, 255)] -

Identifier Description

frame counter
ts timestamp
Gdcal number of calibrated bodies
&d EDOF standard body
3DOF marker
bdf2 Flystick
gl Fingertracking hand
glcal number of calibrated Fingertracking hands
edi 60 inertial body

ct as router for fracking output

Plugin Usage

See UnrealDTrackSample for a detailed example.

The mapping of Flystick buttons and joystick is listed
in DTrackFlystickinputDevice.cpp within
the DTrackPlugin\Source\DTrackinput\Private directory.

https://ar-tracking.com/
https://www.github.com/ar-tracking/UnrealDTrackSample
https://github.com/ar-tracking/UnrealDTrackPlugin/blob/master/Doc/images/dtrack-output.PNG

DTrack Plugin for Unreal Engine 4/5 -
Sample Scene

An Unreal Editor project to demonstrate UnrealDTrackPlugin features.

Installation

Install the Plugin

o Download UnrealDTrackPlugin from Github and follow the installation
instructions there
(Download via Unreal Engine Marketplace is planned for a later point in time)

Configure DTrack

Calibrate or re-adjust your DTrack room coordinate system so that
o the origin is close to the area where you later want to track your ART
targets

o the Z axis points upwards

e See the documentation of UnrealDTrackPlugin and the DTrack User Manual for
more details on room calibration and adjustment.

e Open the DTrack2 Ul and configure your output data stream (Tracking >
Output):
Set the UDP port to 5000, and enable output of &4, 6df2 or g1 depending on
your available hardware.

o Start the DTrack measurement of your bodies and/or flysticks.

Configure the sample project

o Download and copy UnrealDTrackSample into your Unreal Editor project
directory

o Adopt the .uproject file to your Unreal Engine version (e.g.
set "EngineAssociation": "4.27")

o If using Unreal Engine 4 (instead of 5) prepare UnrealDTrackPlugin as
described in UnrealDTrackPlugin

e Open the *.uproject in Unreal Editor and agree to rebuild the project

« Ignore any error complaining that TestMap_BuildData is missing - this file was
removed to reduce project size.
In Unreal Editor click the Build button in the toolbar to rebuild the
map TestMap, then save the map

https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.unrealengine.com/marketplace/en-US/store
https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.github.com/ar-tracking/UnrealDTrackSample
https://github.com/ar-tracking/UnrealDTrackPlugin#Preparation

o In Edit > Plugins search for DTrackPlugin and enable it

e Inthe Window > Live Link (UE4) or Window > Virtual Production > Live
Link (UE5) dialog add the Source DTrack and configure DTrack Settings >
Server Settings

DTrack Live Link Source Configuration

The following screenshots show an example Live Link configuration for DTrack.
Note that the DTrack data stream is split into three Roles:

e a Transform Role for 6DoF data (of standard bodies as well as Flystick bodies),
e a DTrackFlystickinput Role for Flystick button and joystick data,
e aDTrackHand Role for Fingertracking data

u) e

4 Source ». 7] Presetsw

chine Status

Creates a connection to DTrack server source

Role

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-add-dtrack.png

u) Dve i '
4 Source » 7] Presets~

Source Type Source Machine S

Subject Name I Settings

I Debug

tick Input

-Léﬁ d-00 E id
htHand-01 DTrack Hand

Transform Role Configuration

In the Editor window, select either the Cone or the Cube. In the Details tab of this
actor, select the component LiveLinkComponentController. In the Live Link section of
this component you will find Role and Live Link Subject this actor is associated with.

For 6D transformations this is always a Transform Role (DTrackFlystickinput Role is
discussed below). Here, the Cone is configured to be controlled by a standard 6DoF
body with DTrack ID 1 (‘DTrack-Body-00'"), the Cube is controlled by a Flystick 6DoF
body with DTrack ID F1 (‘DTrack-FlystickBody-00").

At this point, when you look to the Editor viewport, either Cone or Cube should
already move in sync with corresponding targets tracked by DTrack (if the
Edtior's Viewport Options are set to Realtime).

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-config-dtrack.png

File Edit Window Help
Rfr Modes

Testiviap

Search Classes
Recently Placed

o D n ich
Basic _‘J CUbﬁ StaticMeshActu

> iy Floor 2
Lights 9 actors (1 selected) © View Options v

Cinematic -
T Details #® Wworld Settings

——— * | C
Geometry. 4 Add Component - o Blueprint/Add Sc
Volumes » Search Components

All Classes ¥ Cube (Instance)

iy StaticMeshComponent (Inherited)

+. LiveLinkComponentController
Search Details EO'

4 Live Link
Map Build B
BEIE] 4 Subject Representation g:fﬂk':fl;‘sl:c:de m

Registry

== Content Browser EX Output Log

I AddNew~. X import [@SaveAll & - |% Content

rterContent

Subject DTrack Flystlc
b g C++ Classes

(= lap_Buil:
Blueprint colol tarterContent estMap { '”[’;:l’['”" Role LiveLinkTr v [o " J8-1
D C en o

§y StaticMeshConw <

6 items © View Options v World Transform

DTrackFlystickinput Configuration

UnrealDTrackPlugin maps Flystick buttons and joystick via a custom A.R.T.

Flystick device. Note that UnrealDTrackPlugin can be used with the new Enhanced
Input system (since UE4.26) as well as the 'legacy’ input system (in Edit > Project
Settings > Engine > Input, marked as deprecated in UE5.1).

https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://www.github.com/ar-tracking/UnrealDTrackPlugin
https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-controller+scene.PNG

<Engine - Input

4 Bindings

s provide a mechs
on Mappings a

4 pction Mappings 4= @

F U ditrack_buttonl
Flystick_Trigger

PN Gitrack_buttonZ :

o owdEEn

Flystick_Buttonl [PRVGRMAI 0
P Flystick

4 pxis Mappings 4+ 0 :

PN dtrack_joy_x

Flystick_JoystickX

PN dtrack_joy_y

Flystick_JoystickY

Speech Mappings

Actions and axis values triggered by the Flystick are then handled by the
Playercontroller FlystickCtrl_BP (in the Content Browser under Content > Blueprints).
This contains a simple script which demonstrates that Flystick data are actually
passed-through by the plugin: The joystick rotates the player camera, and button
presses lead to either jJumps in camera location or a message printed to the screen.

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/project-settings-input.PNG

=% Viewport [Constructio 8 EventGraph
-
>
_f Print String
J Add Yaw Input
< InputAxis dtrack_joy_x arget is Play
InputAction dtrack_button2

" Add Pitch Input
nputAxis dtrack_joy_y arget is Play

Development Only
v
[Get Controlled Pawn
Return Value I setActorLocation

Target Sweep Hit Result
— @ New Location Return Value

InputAction dtrack_button1 3 \
) 20

Teleport D

Target Return Value @
| setActorLocation

ep Hit R

[GetActorLocation .) ocatio Return \

Target Return Value @

The Level Blueprint of TestMap then associates the PlayerController with the
Pawn MyPawn_BP in the scene.

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/playercontroller.PNG

== Event Graph

W

> Event BeginPlay
» —

\

N\

f Possess

Target

—_ In Pawn
/| Get Player Controller

Player Index [g] Return Value

s

3 MyPawn_BP

The game mode MyMode_BP uses FlystickCtr[_BP as the Playercontroller class, and is
itself set up as the default game mode used by TestMap.

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/level-blueprint-pawn+controller.PNG

"’,u. BrajectSettinge

etti

Project Project - Maps & Modes
Import...

"'h These settings are saved in DefaultEngine.ini, which is currently writable.

4 Default Modes

4 Default Maps

TestMap
L e

Editor Startup Map
4" TestMap
Game Default Map \
€0

Warld Outlinen

& 4/ TestMap (Editor) World

o Pu Abmmmmmborin Com A & o

9 actors > View Options

Search Details jo E o

I* Precomputed Visibility

T Details # Vorld Settings

4 Game Mode
GameMode Override = 0 4 2

4 Selected GamehMode
Default Pawn Class _ = 0 4
HUD Class R - o +
Player Controller Class = 0+
Game State Class += 0 +
Player State Class = 0 4
Spectator Class = 0+

Finally you can test this configuration in Play In Editor (PIE) mode.

Fingertracking

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/default-gamemode.PNG
https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/game-mode+testmap.PNG

In case you have a Fingertracking set connected to your A.R.T. tracking system, you
can send the corresponding data to your Unreal application just as you did with
standard bodies and Flystick. To use such data in this demo project go to Content >
FingerTracking, select the assets LeftHand_ABP/RightHand_ABP and drop them into

the scene:

CERCE B] BIEOE

== Content Browser

s AddNew~ X Import Save All & &= Content » FingerTrac' » e

PEY Search Paths OIERREICERAM --=ch FingerTracking _w

B e o

RightHand_

Left misc Right LeftHand_ABP ABP

StarterContent
D em C++ Classes
> gm DTrackPlugin C++ Cl ¢ iome © View Options ~

Note that the Unreal hand locations and orientations only correspond to the DTrack
room coordinate system if for both hands in Unreal Editor > Details > Transform all
values for rotation and location are set to 0, and for scale to 1.

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/hand-scene.png

il

Leﬁml_ﬁtBF SkeletalMeshActor SkeletaIMeshActor
F||gh SkeletalMeshActor SkeletalMeshActor

Showing 2 of 11 actor @ View Options~

8 Details
=Selected Objects: 2 objects {
i
4 Transform
Location + K“szm
Scal x (K VI 2 G -

To view movement of hands and fingers directly within the scene, enable Play >
Simulate. Alternatively, you can also switch to Play In Editor (PIE) mode.

The asset misc > Retargeter is a Blueprint derived from DTrackLivelLinkRetargetAsset,
which is part of DTrackPlugin. The folders Left and Right contain skeletons and
meshes which are edited versions of the SK_Mannequin. The

assets LeftHand_ABP and RightHand_ABP are AnimationBlueprints associated with the
target skeletons LeftHand_Skeleton and RightHand_Skeleton, respectively. Here,

the Live Link Pose node is associated with Retargeter, and its subject is set to one of
the DTrackHand Role instances configured earlier:

File Edit Asset View Debug Window Help

Skeleton n Mesh & Blueprmt

s AnimGraph % Details

-~
tHand_ABP_CT = J
e s R
ton is disablzd 4 Source Data

Live Link Subject

PU— Retarget
Output Pose
O “ » A Retarget Asset e £ n
Live Link Pose - —
¥ 1 Preview Edit = rowser
& Import Save All J [» Edit J Edit Defaults

jo| Z| Y ilters~ m . 2 : Eo-

“ g Content _ - » Root Motion

i Blueprints » Notifies
i colors
4 @ FingerTracking

i | eft
L In
. Right Retargeter
D il StarterContent
b ga C++ Classes

v ga DTrackPlugin C++ Cl

1 item

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/hand-transform.png
https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/hand-blueprint.png

Preparation of Shipping and Development Builds

The procedure above assumes you manually configure DTrack as a Live Link source
each time you start Unreal Editor. For shipping or developement builds you can
automate this step by first creating a Live Link Preset in the Window > Live

Link dialog:

u B Ll

4 Sourcely.] Presetsw

1 item @ View Options v

Next you apply this preset in the Level Blueprint: Create a variable of type Live Link
Preset and compile the Blueprint. The Details tab then offers you a slot for the default
value, which you set to the saved preset. You then connect an Apply to Client node to
the execution path of the Begin Play event, with the preset as target.

https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/LL-preset.png

My Blugprint i _A 5 Details

Y
+addhew~ ¢ @~ - we gl < chDetails jo, Eﬂv
- rowWse ide Unrelated Find Class Settings Cla ults
S ut 4 Variable
+ -

4 Graphs

Functions <> Event BeginPlay

Macros

4Variables

Event Dispatchers = J et Player Contraller A C 1 Default -
Fawri)) =
HLTYALE \ f Apply to Client e °
» [

i MyPawn_BP

LLpreset 0 []

L -
Target Return Value 4 Default Value
2= Content Browser B Output Log

LLpreset
e AddNew - & Import [0 SaveAll & - | % Content »

< EERYS) ¥ Fifters -

Blueprints colors StarterContent LLpreset TesthMap

6 items View Options ~

Note: Currently the Flystick (buttons and joystick) to work correctly with packaged
builds requires to first start the game, and then the DTrack measurement. Make sure
that DTrack measurements are stopped before starting the game.

Note: If the project cannot be opened via the Launcher, but only via the Editors file
menu, you presumably have to adjust the .uproject file to the version of your Unreal
Editor. Follow the corresponding installation step in UnrealDTrackPlugin.

https://github.com/ar-tracking/UnrealDTrackPlugin#Preparation
https://github.com/ar-tracking/UnrealDTrackSample/blob/master/Doc/images/ll-preset-level-blueprint.png

