
3DxInput API 1 of 36 3Dconnexion Public

3DxInput API

Author: Markus Bonk
Participant:
Cc:
Classification:

Document history:

Version Author Date Status Comment
V0.1 Markus Bonk 13-Jan-07 Draft In progress
V0.2 Markus Bonk 25-Jan-07 Draft Update to match name changes
V0.3 Markus Bonk 02-Feb-07 Draft Added TDxInfo and Period property
V0.4 Markus Bonk 02-Mar-07 Draft Added Ziva’s Getting Started and Data

supplied sections.
V0.5 Markus Bonk 18-Apr-07 Draft Removed references to singleton objects.

Added LoadPreferences method to the
Device object. Removed javascript
sample

V0.6 Markus Bonk 01-Aug-07 Draft Added description of standard navigation
modes.

V0.7 Markus Bonk 12-Nov-07 Draft Corrected description of Keyboard
methods.
Changed description of Sensor::Period
Added Navigation Parameters chapter

3DxInput API 2 of 36 3Dconnexion Public

Contents

1. OVERVIEW ..4

1.1 INTRODUCTION ...4
1.2 HISTORY ...4
1.3 REFERENCES..4

2. GETTING STARTED ..5

2.1 3D APPLICATION OPERATING MODES ...5
2.2 ALTERNATE ORIENTATIONS ...5

3. NAVIGATION ...6

3.1 AXIS ORIENTATION ...6
3.2 3D NAVIGATION MODES...6

3.2.1 Object Control...6
3.2.2 Camera Control ..6
3.2.3 Fly – Level Horizon ..6
3.2.4 Walk ...6
3.2.5 Helicopter ..7

3.3 3D NAVIGATION CONTROL USAGE ..7
3.4 2D NAVIGATION..7

3.4.1 Paper Control ...8
3.4.2 View Control ...8

4. NAVIGATION PARAMETERS ..9

4.1 LATENCY...9
4.1.1 Start Delay ..9
4.1.2 Propagation Delay ...9
4.1.3 Frame Rate Lag ...9
4.1.4 Regeneration Delay ...10

4.2 SPEED CONTROL..10
4.2.1 Object Control Panning Speed Adjustment ...10
4.2.2 2D Panning Speed Adjustment..10
4.2.3 Rotation Speed Adjustment..10

5. KEYS ...11

5.1 PRE-DEFINED COMMANDS ...11
5.1.1 Command 31 – Fit ...11
5.1.2 Command 30 – Toggle Configuration Panel..11

6. DATA SUPPLIED ..12

6.1 HOW DATA SHOULD BE USED...14
6.2 DATA TUNING ...17

7. USING THE 3DXINPUT API ..18

8. 3DXINPUT API OBJECT MODEL DIAGRAM ..18

9. DEVICE OBJECT ..19

9.1 DEVICE METHODS ..19
9.1.1 Device::Connect ...19
9.1.2 Device::Disconnect ..19
9.1.3 Device::LoadPreferences ...20

9.2 DEVICE PROPERTIES..21
9.2.1 Device::Keyboard...21
9.2.2 Device::Sensor ...21
9.2.3 Device::Type ...21

9.3 DEVICE EVENTS ...22
9.3.1 Device::DeviceChange..22

10. KEYBOARD OBJECT ..23

3DxInput API 3 of 36 3Dconnexion Public

10.1 KEYBOARD METHODS ..23
10.1.1 Keyboard::IsKeyDown...23
10.1.2 Keyboard::IsKeyUp..23
10.1.3 Keyboard::GetKeyLabel ..24
10.1.4 Keyboard::GetKeyName ...24

10.2 KEYBOARD PROPERTIES..25
10.2.1 Keyboard::Keys ..25
10.2.2 Keyboard::ProgrammableKeys ..25
10.2.3 Keyboard::Device...25

10.3 KEYBOARD EVENTS..26
10.3.1 Keyboard::KeyDown..26
10.3.2 Keyboard::KeyUp ...26

11. SENSOR OBJECT ..28

11.1 SENSOR METHODS...28
11.2 SENSOR PROPERTIES ..28

11.2.1 Sensor::Device ...28
11.2.2 Sensor::Rotation ..28
11.2.3 Sensor::Translation..29
11.2.4 Sensor::Period..29

11.3 SENSOR EVENTS..29
11.3.1 Sensor::SensorInput..29

12. TDXINFO OBJECT ...31

12.1 TDXINFO METHODS ...31
12.1.1 TDxInfo::RevisionNumber...31

12.2 TDXINFO PROPERTIES...31
12.3 TDXINFO EVENTS...31

13. ANGLEAXIS OBJECT..32

13.1 ANGLEAXIS METHODS ...32
13.2 ANGLEAXIS PROPERTIES ...32

13.2.1 AngleAxis::X ...32
13.2.2 AngleAxis::Y ...32
13.2.3 AngleAxis::Z..33
13.2.4 AngleAxis::Angle ..33

14. VECTOR3D OBJECT ...34

14.1 VECTOR3D METHODS..34
14.2 VECTOR3D PROPERTIES ...34

14.2.1 Vector3D::X...34
14.2.2 Vector3D::Y...34
14.2.3 Vector3D::Z...34
14.2.4 Vector3D::Length ...35

15. SAMPLES...36

15.1 CUBE3DPOLLING ...36
15.2 ATLCUBE3D ...36
15.3 MONITOR ..36

3DxInput API 4 of 36 3Dconnexion Public

1. Overview

1.1 Introduction
This reference guide documents the 3Dconnexion 3DxInput Application Programming
Interface (API) which allows third party programmers to add support for 3D input
devices and customize the data received.

1.2 History
V0.1 Initial Draft
V0.2 Updated to match new class names
 Added description of IsKeyDown and IsKeyUp methods
 Removed KeyState property
V0.3 Added TDxInfo Object
 Added description of the Sensor Period property
V0.4 Added Getting Started and Data Supplied sections.
 Added Data Tuning paragraph
V0.5 Removed references to singleton objects.

Added LoadPreferences method to the Device object.
Removed javascript sample

V0.6 Added description of the object and camera navigation modes and where these
are useful

V0.7 Corrected description of the Keyboard::GetKeyLabel() and
Keyboard::GetKeyName() methods.
Changed the description of the Sensor::Period property
Added 2D navigation to the navigation chapter.
Added the navigations parameters chapter.
Added reference to TDx.TDxInput.dll assembly for .NET and a short note about
deployment.
Added note to Device::Connect() concerning message loop requirement
Removed version in title
Added section on pre-defined key commands

1.3 References

3DxInput API 5 of 36 3Dconnexion Public

2. Getting Started
3Dconnexion navigation products are true 3D input devices that detect the slightest
fingertip pressure and resolve the pressure into X, Y, and Z translations and rotations,
moving your 3D models instantaneously and simultaneously. This provides intuitive,
interactive six-degrees-of-freedom control of 3D graphical images and objects.

2.1 3D Application Operating Modes
Using a 3Dconnexion device is natural and intuitive. There are two basic ways to move
objects in 3D with the device:

• Manipulate the 3Dconnexion controller cap as if you are holding the 3D model
in your hand; this is Object Mode. Push left and the model moves left. Push
right and it moves right. Lift up or push down and the model moves accordingly.
Push away and or pull forward on the sensor and the model responds
accordingly. Twist in any direction and the model rotates in that direction. This
is the most natural mode when there is a single item to move.

• Manipulate the 3Dconnexion controller cap as if it is a camera or your head; this
is Camera Mode. Push into the scene and the camera moves forward into the
scene. The scene will appear to move toward and around the viewer. Push
left and the camera moves to the left (the scene moves to the right). Push right
and the camera moves to the right (the scene moves to the left). Lift up and the
camera moves up. Push down and the camera moves down. The scene
always moves the opposite direction of the input device. The viewer is entering
the scene as if walking around in it. It normally takes some time to get used to
this mode. It is a natural mode in a virtual scene environment when there is a
clear floor and/or horizon rather than some single object to move.

You can apply any of these actions at the same time, causing the image to move as you
move.

2.2 Alternate Orientations
Some users prefer to think of the Windows desktop as being a real desktop. They like
to think of their screen as looking down on their desktop, not as looking at a projection
of it or say a whiteboard. Therefore, they prefer to have the controller cap oriented
similar to a mouse in which pushing away from them causes the object under control to
go up the screen in the same way that pushing a mouse away from them causes the
Windows cursor to move up the screen. The 3DxWare driver GUI supports this option
by rearranging the axes. Several axes have to be changed in conjunction to maintain a
consistent interaction model.

You should develop your application using the orientation that puts Zoom towards you
and away from you parallel to your desk. The GUI will then rearrange the axes for your
end-users.

3DxInput API 6 of 36 3Dconnexion Public

3. Navigation
The goal of integrating a 3D mouse into an application is to provide the user with
experience as if he were holding the displayed object, or the camera, in his hand. This
illusion can only be upheld if the object moves simultaneously with the hand movement
and in the direction the user expects.
To achieve an excellent user experience the developer needs to understand the
difference between 2D and 3D mice and the parameters that affect the navigation
experience.

3.1 Axis Orientation
Where discussing axes and orientations, this document will assume a right-handed
coordinate system with ‘Y’ as the Up axis and ‘Z’ pointing to the observer.

3.2 3D Navigation Modes

3.2.1 Object Control

The main characteristic of object mode navigation is that the user has the impression he
is holding the object in his hand. An important use for this navigation mode is in the
modeling and inspection of parts and assemblies.
To create this illusion for the user, the direction that the object moves needs to be the
same as the direction the user moves his hand, which is moving the devices cap. It is
also important that the center of rotation is fixed relative to the object. A consequence of
this mode is that the pan speed needs to be adjusted depending how far the object is
from the user (see paragraph 4.2.1 below).

3.2.2 Camera Control

Camera mode navigation is characterized by the user having the impression that he is
moving around in the scene he is observing. A typical use for a camera mode is
exploring virtual sceneries or in first person games. This requires that the user moves
and turns in the direction that the cap on the 3D mouse moves, and causes the objects
displayed to move in the opposite direction to object mode described above. In camera
mode the center of rotation is at the eye or view point. Because camera mode
navigation reflects movement in the real world, there are a number of sub modes which
have various constraints similar to those existing in the real world.

3.2.3 Fly – Level Horizon

Fly – Level Horizon mode is used to describe a camera mode navigation where the
horizon is required to always remain leveled ("horizontal"). This constraint is often
named ‘disable rolling’ but is not the same as simply disabling the roll axis on the device
as the combination of the tilt and spin rotations will result in a rotation in the roll axis.
Also incorrect is ignoring the roll axis inputs and applying the spin directly around the
world’s up axis.
Apart from the horizon constraint fly mode is the same as unconstrained camera mode,
with the center of rotation located in the camera.

3.2.4 Walk

This mode is used where the height above a surface is required to remain constant
whilst still allowing the user to look up and down. Walk mode has the same constraint
applied to the horizon as Fly – Level Horizon mode in that the horizon must remain
leveled. The translations applied to the cap of the device are considered to be in the
world zx plane with the device’s y-axis disabled: Pushing the cap forward moves the
observer forward in the virtual plane he is standing independent of whether he happens
to be looking up or down. An analogy would be that the device controls the walker’s
body whilst the tilt axis controls the walker’s head or eyes.

3DxInput API 7 of 36 3Dconnexion Public

3.2.5 Helicopter

As the name suggests this mode simulates a helicopter control mechanism. Similar to
walk mode navigation the device’s pan axes control the movement in a plane parallel to
the world’s zx-plane irrespective of the applied tilt.
However, unlike walk mode, the device’s y-axis is used directly to control the height
above the world’s zx- plane. In this navigation mode pulling the devices cap up causes
the height above world’s zx-plane to increase, increasing the distance of the view point
above the plane. Similarly, pressing the cap down causes the view point to get closer to
the plane.
Not only are the device’s y-translation values applied directly to the world’s up-axis, the
same is true for the devices spin values: These rotations act as if the device’s and the
world’s up-axis were coincidental.

3.3 3D Navigation Control Usage

Not all navigation modes have the same importance in every application. Which
navigation mode in a virtual environment feels most natural is related to how a similar
task would be performed in the real world. For example, if the user has the impression
that he is looking at something he would hold, then the natural navigation mode would
be object mode. Similarly, if he thinks that he is in a building or scene then the most
natural mode might be ‘walk’.

The table below lists a number of application categories and the navigation modes we
have identified as being most appropriate for the tasks that the user may perform.

3D Navigation Modes

Application type Object Camera Fly Walk Helicopter

CAD / CAM Modeling
and
Inspection

Digital Context
Creation

Modeling Inspection Animation

Architectural Modeling Inspection Inspection

Geographic
Information System

 General
Navigation

Application Navigation Modes

3.4 2D Navigation

2D navigation is characterized by only being able to pan and zoom and not being able
to rotate at all. One might argue that a rotation about the view direction to change the
layout from portrait to landscape should be allowed. However, this forgets that
navigation is about continuous smooth movement; this does not apply to changing the
layout format which is the 2D equivalent of changing to a different view.
The two navigation paradigms that are of interest in 2D views are what we call paper
and view control.

3DxInput API 8 of 36 3Dconnexion Public

3.4.1 Paper Control

The ‘real-life’ equivalent is of a user holding a piece of paper or book in his hand. In this
navigation mode the viewed object or document moves, that is pans and zooms, in the
same direction as the hand movement.

3.4.2 View Control

View control is the default 2d navigation paradigm for manipulating windows using the
2d mouse and the scrollbar controls. Effectively, the only difference to Paper Control is
the direction that the viewed document moves and is similar to moving your view point
above a document.

3DxInput API 9 of 36 3Dconnexion Public

4. Navigation Parameters

In order to provide a good navigation experience, a number of parameters which affect
the quality of the process of transforming the user’s hand movement to a visual
representation in the virtual 2D or 3D viewing space need to be understood and taken
into consideration when adding support for a 3D input device.

4.1 Latency
There are at least four time constants which have a major affect on the quality of the
navigation experience. It is neither possible to completely remove all of them nor even
guarantee that they all are within certain bounds; one of the reasons for this being that
the operating systems with which the majority of us work today are not real time
systems. However, for the purpose of the following discussion, the effects of CPU and
resource load due to other programs will be ignored.

4.1.1 Start Delay

The time between the user moving the 3D mouse from rest and when the object starts
to move on the screen is what we shall call the start delay. Ideally, the application does
not need any special initialization before it starts converting the 3D input data into visual
feedback. This is not true for all applications: possibly a different graphical
representation or viewport type needs to be created and initialized before navigation
can begin. The time that this takes results in the start delay. If this delay is too long the
user will let go of the device before he sees a resulting movement on the screen and
assume that the input device is defective.

4.1.2 Propagation Delay

If we assume that we are looking at a very simple model which can be drawn almost
instantaneously, then the time that elapses between the user changing the 3D mouse
sensor displacement and the effects of the change propagating to the view is caused
solely by the propagation delay. With a very short propagation delay, the user has the
impression that he is directly attached to the object that he is controlling. A noticeable
propagation delay is characterized by the impression that a rubber band appears
somehow to be connected between the controller the object being moved.

4.1.3 Frame Rate Lag

The frame rate that an application can maintain when the user is navigating is a
measure of the usability of the 3D mouse. The reason for this is that the 3D mouse
delivers values that represent the translation and rotation speed of the object or view
that the user is trying to control. Increasing the frame rate results in a smaller time
interval and hence a smaller distance travelled since the user was last shown the result
of his pushing, pulling or turning of the cap of the device. The resulting user experience
due to the high frame rate is one of a smoother and more precise navigation.

Conversely, a larger time interval between consecutive frames leads to adverse effects
which leave the user with a poor navigation experience: he is not sure where the object
actually is on the screen as a small movement of his hand can result in a large change
of the controlled objects velocity and more than likely redrawing the screen is not
synchronized with single model or scene changes.

As the scene complexity increases, the frame rate that can be achieved will decrease.
There would appear little alternative to reducing the amount that needs to be redrawn
from one frame to the next to be able to achieve a reasonable frame rate. Depending on
the application and the capabilities of for example the API, a number of strategies can
be useful. A very common strategy, often implemented by the program itself, is to
degrade the visual style used to draw in the viewport dependent on the frame rate.
It can in some cases be sufficient to notify the program that degrading should begin and
after the user has returned the cap to the rest position that degradation is no longer
required.

3DxInput API 10 of 36 3Dconnexion Public

4.1.4 Regeneration Delay

The regeneration delay occurs when the user puts the cap back into the zero or rest
position and the application cannot be used for a period of time longer than can be
accounted for by the previously mentioned latency times. One reason for this kind of
program unresponsiveness is when the scene or model needs to be redrawn in a visual
style more detailed than the style used during navigation.

4.2 Speed Control

4.2.1 Object Control Panning Speed Adjustment

When using the 3D mouse to hold the viewed object and move it around in 3D, the
speed of panning in the screen plane needs to be adjusted depending on the distance
of the view point to the object. That is, when the user moves what he is holding nearer
so that he can identify more detail and to have precise 2D mouse control, the 3D
panning speed needs to be reduced accordingly.
A simple speed algorithm that accounts for the viewing distance is one that adjusts the
panning speed of a point in, or on the surface of the object such that independent of the
size of the object, the time that the point takes to traverse the viewport window is
constant for the same displacement of the 3d mouse cap. Some minimal pan speed is
required as otherwise the speed will reduce to zero when the user has moved close to
the referenced point.

4.2.2 2D Panning Speed Adjustment

The speed adjustment algorithm described above also applies to 2D views. Here,
instead of moving the object the size, or zoom level, is changed instead of moving in the
z-axis. Nonetheless the speed that a point on the object takes to traverse the viewport
window needs to be adjusted according to the visible width of the 2D world.

4.2.3 Rotation Speed Adjustment

In general, the rotation speed does not need adjusting dependent on the distance of the
viewed object to the user’s eye point. However, experience has shown that a rotation
speed that feels comfortable using object control is too fast in camera control by a factor
of approximately 2.

3DxInput API 11 of 36 3Dconnexion Public

5. Keys

3Dconnexion devices can have various numbers of keys which consist of keys with pre-
assigned specific functionality and keys that can be assigned to commands by the user.
Generally, the keys are numbered from 1 consecutively up to the number of keys on the
device. When the user presses a key and the command associated with it cannot be
executed directly by the driver, the application will be notified that it should execute the
required command.

5.1 Pre-defined Commands
There are a number of commands which are predefined and should be supported by all
applications.

5.1.1 Command 31 – Fit

With ‘Fit’ assigned to a key, the application will be notified via the Keydown() keyboard
event that key 31 has been pressed, i.e. that it should execute command 31 and fit the
possibly no longer visible objects to the current viewport. The exact functionality
associated with ‘Fit’ needs to be interpreted in the context of the application. Whereas in
a modeling environment this may be simply centering an object on the screen, in a GIS
application this might be interpreted as setting a specific zoom level and orientation.

5.1.2 Command 30 – Toggle Configuration Panel

An application is only required to support command 30 if it has a 3D mouse
configuration panel. When this command is received the application should toggle the
visibility state of the 3D mouse configuration or option panel.

3DxInput API 12 of 36 3Dconnexion Public

6. Data Supplied

3Dconnexion devices provide full, simultaneous six-axis movement in any and all
directions. The diagrams below show the orientation of Translation and Rotation axes
on the sensor. Following the diagrams, there are two charts explaining the data range of
each axis, and the axis ‘meaning’ in both 6D Navigation (Camera Mode) and 6D Object
Control (Object Mode).

It is crucial to a good implementation of the 3Dconnexion device in your application that
the movement resulting from pressures on the sensor be as smooth and instantaneous
as possible. Please use the diagrams and charts below when adding support for the
3Dconnexion device to your application. The motions in parentheses are what are
designated in the 3Dconnexion Control Panel by default and reflects the user
terminology for these motions.

PAC

The normal range of the device axes is approximately +/- 500. The user can though,
scale up or down these values in the GUI, so your application should be able to handle
larger or smaller values.

The 3Dconnexion devices produce both a translation and a rotation vector
simultaneously as the user pushes, pulls, or twists the device cap (as is shown in the
diagram below). The translation vector is proportional to the linear displacement the
user applies to the handle. The rotations returned from the device are proportional to
the vector about which the user is applying a rotary displacement.

Applying a Rotation to the 3D Sensor

3DxInput API 13 of 36 3Dconnexion Public

The translation vector is fairly easy to interpret. The three components (X, Y, and Z) of
the translation vector can be applied in the same manner as similar data from the
keyboard or mouse is applied to the viewing transform. The rotation vector is a different
matter. Applying the rotation vector as individual parts will not give the same result as
rotation about the vector (see below). If the data is applied individually the user will
notice a “wobble” when performing a rotation.

Individual Rotations vs. Rotation about a Vector

3DxInput API 14 of 36 3Dconnexion Public

6.1 How Data should be used
One of the most frequently asked questions 3Dconnexion receives is how to map the axes of the
device to match the application. Here is the rule of thumb.

Note:
The home position for the device is with the negative Z-axis pointing towards the screen. The
dice in these illustrations, when at home or rest, is between the two posts, slightly above the
surface as shown in the graphic below.

Object at Rest

Translation Controls

Device Value Camera Mode Object Mode

Translate Z-axis
0 to MAX

Camera Moves
Backward

Object Moves Closer

Translate Z-axis
0 to -MAX

Camera Moves Forward

Object Moves Away

Translate Y-axis
0 to MAX

Camera Moves Up or
Jumps

Object Moves Up

3DxInput API 15 of 36 3Dconnexion Public

Device Value Camera Mode Object Mode

Translate Y-axis
0 to -MAX

Camera Moves Down or
Crouches

Object Moves Down

Translate X-axis
 0 to MAX

Camera Moves Right

Object Moves Right

Translate X-axis
0 to -MAX

Camera Moves Left

Object Moves Left

3DxInput API 16 of 36 3Dconnexion Public

Rotation Control

Device Value Camera Mode Object Mode

Rotate Z-axis
0 to MAX

Left Cartwheel or Barrel
Roll

Spins Counterclockwise

Rotate Z-axis
0 to -MAX

Right Cartwheel or Barrel
Roll

Spins Clockwise

Rotate Y-axis
0 to -MAX

Spin Clockwise

Spins Clockwise

Rotate Y-axis
0 to MAX

Spin Counterclockwise

Spins Counterclockwise

Rotate X-axis
0 to MAX

Pitch Up or Look Up

Object top spins towards
you

3DxInput API 17 of 36 3Dconnexion Public

Device Value Camera Mode Object Mode

Rotate X-axis
0 to -MAX

Pitch Down or Look Down

Object bottom spins
towards you

6.2 Data Tuning
It is important, from the point-of-view of user experience, that the speed response of
one application is consistent with that of the others. A user easily relates to the force
necessary to achieve a given speed (rotation or translation) in an application and
expects the same behavior from other applications.

Note:
The initial slow default speed of the "Any Application" configuration is for the
inexperienced user. What a developer may feel as a more comfortable speed may, in
fact, be more difficult for an inexperience user to control.

To tune the speed of an application, the developer should use the “Jet Demo” program
as a reference. A proven method is having the driver (3DxWare) using the "Any
Application" configuration and setting the ‘Overall Speed’ in the driver to a value that the
developer feels gives a good response in the Demo. Then, using the same
configuration, the developer can compare the response of his application with that of
the demo.

3DxInput API 18 of 36 3Dconnexion Public

7. Using the 3DxInput API
The 3DxInput API is available from 3DxSoftware v3.1 and later. You can use any
programming language that supports COM to use 3DxInput to add support for
3Dconnexion input devices. The COM server is implemented as the dynamic load
library TDxInput.dll which is automatically registered when 3DxWare is installed.

To use 3DxInput in a C/C++ environment add the following to the stdafx.h header file
#import "progid:TDxInput.Device" embedded_idl no_namespace.
Also see the AtlCube3D sample.

To use 3DxInput in a .NET environment a reference to the TDx.TDxInput.dll assembly
needs to be set in the Visual Studio 2005 project environment. See the Microsoft Visual
Studio 2005 Documentation on how to do this.

Note:
The TDx.TDxInput.dll assembly will need to be deployed with the .NET applications
referencing it. The TDx.TDxInput.dll assembly may only be deployed without change
to a directory local to the .NET application referencing it and must not be registered to
the global assembly cache.

8. 3DxInput API Object Model Diagram
The diagram below depicts the 3Dconnexion 3DxInput API object model.

Other objects:

AngleAxis

Vector3D

TDxInfo

Device

Sensor

Keyboard

3DxInput API 19 of 36 3Dconnexion Public

9. Device Object

The Device object is the base object which provides access to the 3Dconnexion device
via other objects exposed in the API.

In a C++ COM application the Device object can be obtained by using
CoCreateInstance. The Device methods are exposed by the ISimpleDevice interface.

9.1 Device Methods

9.1.1 Device::Connect

Description

This method connects the client to the 3dx device and enables event notification.

Syntax (COM)

result = ISimpleDevicePtr->Connect()

Return: (HRESULT) result S_OK if successful

Important:
For the device object to be able to access data from the 3D mouse the application
needs to be a windows application, or more precise, is required to implement a
message pump

Remarks

The Connect() method will succeed even when no device is connected to the computer
or the 3DxWare driver is not running. Stopping and starting the 3DxWare driver will
leave the client in the connected state, although the client’s DeviceChange event
handler may be executed when 3DxWare restarts.

9.1.2 Device::Disconnect

Description

This method disconnects the client from the 3dx device and disables event notification.

Syntax (COM)

result = ISimpleDevicePtr->Disconnect()

Return: (HRESULT) result S_OK if successful

Remarks

3DxInput API 20 of 36 3Dconnexion Public

9.1.3 Device::LoadPreferences

Description

This method associates a preferences configuration with the device

Syntax (COM)

result = ISimpleDevicePtr-> LoadPreferences (preferencesName)

Input: (BSTR) preferencesName a string identifying the preferences

Return: (HRESULT) result S_OK if successful

Availability

Introduce in revision number 1.1.0

Remarks

In the current implementation of 3dxware, the preferencesName is used to identify the

application receiving data from the device. A good name to use would be the name of

the application or product. Configuration files are multi-device and multilingual and

installed by 3dxware. To have a custom configuration file installed for your application

contact 3Dconnexion.

3DxInput API 21 of 36 3Dconnexion Public

9.2 Device Properties

9.2.1 Device::Keyboard

Description

This property returns an interface to the Keyboard object. This is a read only property.

Syntax (COM)

result = ISimpleDevicePtr->get_Keyboard(&IKeyboardPtr)

Property: IKeyboardPtr Pointer to the Keyboard interface

Return: (HRESULT) result S_OK if successful

Remarks

9.2.2 Device::Sensor

Description

This property returns an interface to the Sensor object. This is a read only property.

Syntax (COM)

result = ISimpleDevice->get_Sensor(&ISensorPtr)

Property: ISensorPtr Pointer to the Sensor interface

Return: (HRESULT) result S_OK if successful

Remarks

9.2.3 Device::Type

Description

This property returns the type of device attached to. This is a read only property.

Syntax (COM)

result = ISimpleDevice->get_Type(&type)

Property: (long) type Device attached

Return: (HRESULT) result S_OK if successful

Remarks

The type property describes the device attached: UnknownDevice = 0, SpaceNavigator
= 6, SpaceExplorer = 4, SpaceTraveler = 25, SpacePilot = 29

3DxInput API 22 of 36 3Dconnexion Public

9.3 Device Events

9.3.1 Device::DeviceChange

Description

This event is triggered when Device recognizes a new device has been attached.

Syntax (COM)

result = OnDeviceChange(long reserved)

Input: (long) reserved Reserved for future use

Return: (HRESULT) result S_OK if successful

Important:
If the event handler has been attached from managed code, it is essential to keep at
least one reference to the device component to be able to receive events. When the
last reference to the device runtime callable wrapper is released the garbage
collection will also detach any device event handlers still attached.

Remarks

A simple method of attaching to receive event notification using COM is given by
hr = __hook(&_ISimpleDeviceEvents::DeviceChange, ISimpleDevicePtr,
&OnDeviceChange);
Here the DeviceChange event is reference via the _ISimpleDeviceEvents event
interface.

3DxInput API 23 of 36 3Dconnexion Public

10. Keyboard Object

The Keyboard object provides access to the 3Dconnexion device keyboard.
The Keyboard object can be obtained by from the Device object.

10.1 Keyboard Methods

10.1.1 Keyboard::IsKeyDown

Description

This property returns the down state of a specific key on the device.

Syntax (COM)

result = IKeyboardPtr->IsKeyDown(key, &retval)

Input: (long) key the number of key on the device

Output: (VARIANT_BOOL) retval VARIANT_TRUE if the key is depressed

Return: (HRESULT) result S_OK if successful

Remarks

10.1.2 Keyboard::IsKeyUp

Description

This method returns the up state of a specific key on the device.

Syntax (COM)

result = IKeyboardPtr->IsKeyUp(key, &retval)

Input: (long) key the number of key on the device

Output: (VARIANT_BOOL) retval VARIANT_TRUE if the key is released

Return: (HRESULT) result S_OK if successful

Remarks

3DxInput API 24 of 36 3Dconnexion Public

10.1.3 Keyboard::GetKeyLabel

Description

This method returns the label of a key as printed on the device.

Syntax (COM)

result = IKeyboardPtr-> GetKeyLabel (key, &label)

Input: (long) key the number of key on the device

Output: (BSTR) label label on the device

Return: (HRESULT) result S_OK if successful

Remarks

10.1.4 Keyboard::GetKeyName

Description

This method returns the name of a key on the device.

Syntax (COM)

result = IKeyboardPtr-> GetKeyName (key, &name)

Input: (long) key the number of key on the device

Output: (BSTR) name name of the key

Return: (HRESULT) result S_OK if successful

Remarks

Generally GetKeyName will return the same as GetKeyLabel. Currently the only
exception is for the SpaceNavigator: The left button’s name is “N1” and the right
button’s name is “N2”. This is to be able to distinguish these keys from the “L” and “R”
keys on the SpaceExplorer and SpacePilot.

3DxInput API 25 of 36 3Dconnexion Public

10.2 Keyboard Properties

10.2.1 Keyboard::Keys

Description

This property returns the number of keys on the device. This is a read only property.

Syntax (COM)

result = IKeyboardPtr->get_Keys(&keys)

Property: (long) keys the number of keys on the device

Return: (HRESULT) result S_OK if successful

Remarks

10.2.2 Keyboard::ProgrammableKeys

Description

This property returns the number of keys on the device which may be reprogrammed.
This is a read only property.

Syntax (COM)

result = IKeyboardPtr ->get_ProgrammableKeys(&keys)

Property: (long) keys The number of reprogrammable keys

Return: (HRESULT) result S_OK if successful

Remarks

10.2.3 Keyboard::Device

Description

This property returns the parent device component of the keyboard. This is a read only

property.

Syntax (COM)

result = IKeyboardPtr ->get_Device(&ISimpleDevicePtr)

Property: ISimpleDevicePtr Pointer to an SimpleDevice component interface

Return: (HRESULT) result S_OK if successful

Remarks

3DxInput API 26 of 36 3Dconnexion Public

10.3 Keyboard Events

10.3.1 Keyboard::KeyDown

Description

This event is triggered when a key on the device is pressed

Syntax (COM)

result = OnKeyDown(int keycode)

Input: (long) keycode The number of the key pressed

Return: (HRESULT) result S_OK if successful

Important:
If the event handler has been attached from managed code, it is essential to keep at
least one reference to the device component to be able to receive events. When the
last reference to the device runtime callable wrapper is released the garbage
collection will also detach any device event handlers still attached.

Remarks

A simple method of attaching to receive event notification of the KeyDown event using
COM is given by
hr = __hook(&_IKeyboardEvents::KeyDown, IKeyboardPtr, &OnKeyDown);
Here the KeyDown event is reference via the _IKeyboardEvents event interface.

10.3.2 Keyboard::KeyUp

Description

This event is triggered when a key on the device is released

Syntax (COM)

result = OnKeyUp(int keycode)

Input: (long) keycode The number of the key released

Return: (HRESULT) result S_OK if successful

Important:
If the event handler has been attached from managed code, it is essential to keep at
least one reference to the device component to be able to receive events. When the
last reference to the device runtime callable wrapper is released the garbage
collection will also detach any device event handlers still attached.

Remarks

A simple method of attaching to receive event notification of the KeyUp event using
COM is given by

3DxInput API 27 of 36 3Dconnexion Public

hr = __hook(&_IKeyboardEvents::KeyUp, IKeyboardPtr, &OnKeyUp);
Here the KeyUp event is reference via the _IKeyboardEvents event interface.

3DxInput API 28 of 36 3Dconnexion Public

11. Sensor Object

The Sensor object provides access to the 3D motion data of the 3Dconnexion device.

In a C++ COM application the Sensor object can be obtained from the Device object.

11.1 Sensor Methods

11.2 Sensor Properties

11.2.1 Sensor::Device

Description

This property returns the parent device component of the sensor. This is a read only
property.

Syntax (COM)

result = ISensorPtr->get_Device(&ISimpleDevicePtr)

Property: ISimpleDevicePtr Pointer to an SimpleDevice component

interface

Return: (HRESULT) result S_OK if successful

Remarks

11.2.2 Sensor::Rotation

Description

This property returns the rotation component of the sensor data. This is a read only
property.

Syntax (COM)

result = ISensorPtr->get_Rotation(&IAngleAxisPtr)

Property: IAngleAxisPtr Pointer to an AngleAxis component interface

Return: (HRESULT) result S_OK if successful

Remarks

3DxInput API 29 of 36 3Dconnexion Public

11.2.3 Sensor::Translation

Description

This property returns the translation component of the sensor data. This is a read only
property.

Syntax (COM)

result = ISensorPtr ->get_Translation(&IVector3DPtr)

Property: IVector3DPtr Pointer to an Vector3D component interface.

Return: (HRESULT) result S_OK if successful

Remarks

11.2.4 Sensor::Period

Description

This property returns the ideal event frequency.

Syntax (COM)

result = ISensorPtr ->get_Period(&period)

Property: (DOUBLE) period Data time period

Return: (HRESULT) result S_OK if successful

Remarks

11.3 Sensor Events

11.3.1 Sensor::SensorInput

Description

This event is triggered when data has been received from the 3Dconnexion device.

Syntax (COM)

result = OnSensorInput()

Return: (HRESULT) result S_OK if successful

Important:
If the event handler has been attached from managed code, it is essential to keep at
least one reference to the device component to be able to receive events. When the
last reference to the device runtime callable wrapper is released the garbage
collection will also detach any device event handlers still attached.

3DxInput API 30 of 36 3Dconnexion Public

Remarks

A simple method of attaching to receive event notification using COM is given by
hr = __hook(&_ISensorEvents::SensorInput, ISensorPtr, &OnSensorInput);
Here the SensorInput event is reference via the _ISensorEvents event interface. The
sensor data can be retrieved using the Translation and Rotation properties.

3DxInput API 31 of 36 3Dconnexion Public

12. TDxInfo Object

The TDxInfo object provides general information about the component server

12.1 TDxInfo Methods

12.1.1 TDxInfo::RevisionNumber

Description

This method returns the current TDxInput revision number

Syntax (COM)

result = ITDxInfoPtr->RevisionNumber (&revisionNumber)

Input: (long) key the number of key on the device

Output: (BSTR) revisionNumber Revision as “x.y.z”

Return: (HRESULT) result S_OK if successful

Remarks

12.2 TDxInfo Properties

12.3 TDxInfo Events

3DxInput API 32 of 36 3Dconnexion Public

13. AngleAxis Object

The AngleAxis object provides a representation for orientation in 3D space using an
angle and an axis. The rotation is specified by a normalized vector and an angle around
the vector. The rotation is the right-hand rule.

13.1 AngleAxis Methods

13.2 AngleAxis Properties

13.2.1 AngleAxis::X

Description

This property returns the X component of the vector.

Syntax (COM)

result = IAngleAxisPtr->get_X(&x)

Property: (double) X X component of the rotation vector

Return: (HRESULT) result S_OK if successful

Remarks

13.2.2 AngleAxis::Y

Description

This property returns the Y component of the vector.

Syntax (COM)

result = IAngleAxisPtr->get_Y(&y)

Property: (double) Y Y component of the rotation vector

Return: (HRESULT) result S_OK if successful

Remarks

3DxInput API 33 of 36 3Dconnexion Public

13.2.3 AngleAxis::Z

Description

This property returns the Z component of the vector.

Syntax (COM)

result = IAngleAxisPtr->get_Z(&z)

Property: (double) Z Z component of the rotation vector

Return: (HRESULT) result S_OK if successful

Remarks

13.2.4 AngleAxis::Angle

Description

This property returns the Angle component of the rotation.

Syntax (COM)

result = IAngleAxisPtr->get_Angle(&angle)

Property: (double) angle Angle component of the rotation.

Return: (HRESULT) result S_OK if successful

Remarks

The angle is in arbitrary units. The angle is right handed

3DxInput API 34 of 36 3Dconnexion Public

14. Vector3D Object

The Vector3D object provides a representation for direction in 3D space.

14.1 Vector3D Methods

14.2 Vector3D Properties

14.2.1 Vector3D::X

Description

This property returns the X component of the vector.

Syntax (COM)

result = IVector3DPtr->get_X(&x)

Property: (double) X X component of the vector

Return: (HRESULT) result S_OK if successful

Remarks

14.2.2 Vector3D::Y

Description

This property returns the Y component of the vector.

Syntax (COM)

result = IVector3DPtr ->get_Y(&y)

Property: (double) Y Y component of the vector

Return: (HRESULT) result S_OK if successful

Remarks

14.2.3 Vector3D::Z

Description

This property returns the Z component of the vector.

Syntax (COM)

result = IVector3DPtr ->get_Z(&z)

Property: (double) Z Z component of the vector

Return: (HRESULT) result S_OK if successful

Remarks

3DxInput API 35 of 36 3Dconnexion Public

14.2.4 Vector3D::Length

Description

This property returns the length of the vector.

Syntax (COM)

result = IVector3DPtr ->get_Length(&length)

Property: (double) length The length of the vector

Return: (HRESULT) result S_OK if successful

Remarks

Setting the length to 1 normalizes the vector.

3DxInput API 36 of 36 3Dconnexion Public

15. Samples

A number of examples are available demonstrating how to connect to the 3Dconnexion
device.

15.1 Cube3DPolling
This is a simple 3D cube sample which connects to the 3Dconnexion device and uses
polling to access the device data.

15.2 AtlCube3D
This is a simple 3D cube sample which connects to the 3Dconnexion device and
demonstrates how to connect to the sensor and keyboard events

15.3 Monitor
The Visual Basic Monitor sample displays a simple form that outputs the motion values
of the sensor.

