3Dconnexion Navigation
Framework (Navlib)

Author: 3Dconnexion
Participant(s):

Cc:

Classification: Public documentation

Document history summary:

Version Author Date Status Comment
0.1 3Dconnexion 2015-Feb-09 Draft Preliminary documentation
0.2 3Dconnexion 2016-Dec-13 Draft | Updated to navlib v0.6.0
0.3 3Dconnexion 2018-Jan-30 Draft | Updated to navlib v0.7.0
0.4 3Dconnexion 2018-May-14 | Draft | Added description of samples and
Reference to Navigation3D
0.5 3Dconnexion 2018-June-15 | Draft = Added Getting Started
0.6 3Dconnexion 2018-July-20 Draft | Added probe functions.
0.7 3Dconnexion 2019-Jan-08 Draft | Added missing pivot properties
0.8 3Dconnexion 2022-Aug-10 Draft | Added new model properties
3Dconnexion Navigation Framework 1 of 26 3Dconnexion Internal

Content

O [1= 1 10 I [0] N 3
O R U =] =T 1= TR 3
O 7 = 1] = XU |51 =1 N o] =TT 3
I T B To Lo U 1 = Nl (1S 0] = 3 2T 3
I o L= N[=TT 3

A O V4 = AV | VYT 4
2.1 3DCONNEXION’S INPUT DEVICES.....uuiiietiiiietieee e eeetee e e et e e et e e st e e s et s e s saaa e e s eaaeeeeaaans 4
2.2 3DCONNEXION NAVIGATION LIBRARY ...cvuuiiiitiiieiii ettt ee et e e st s e s stae e e s et s e s seaaesssaaneeeeaaans 4
P I €= TN (RS Y & 1 =1 o 4

G T U7 X] 6
3.1 3DCONNEXION NAVIGATION FRAMEWORK DEPENDENCIESccevvvniiiirieeeeeieeeeerieeesevaeeeeaanns 6
3.2 COORDINATE SYSTEM 1.ittuiiiitiieeeetieeetaeeesetaeeseat s eseaaaeeset e eeeaa e tstaeeeeataseereraeessrneserernns 6
3.3 THE NAVLIB ‘C INTERFACEctutiiiiett ittt e et e et e e et e e e et e e e et e et st e s e eat s eesnaaeessaaseeeaaass 6
3.4 INAVLIB PROPERTIES ..itutiituiiittiettetttesttatettn ettt sessstansstasesassst sttt sssttesnastanesrsntersnsestaeees 9
R TS Y 1 21U [0 10 = TR 18
3.6 THE NAVLIB CH INTERFACE.uuiittiitieiteete ettt e et s et es e et e sae s st s e st s sabs e et e raneasteesnasrannns 25
3.7 FRAME RATE AND ANIMATION .uuuitutiieniitiieeteteteetteraessts ettt etansstnsesaesstesetnseraesstseesnaersnnes 25

4, SAMPLE CODEottt e e ettt e et e e e et e e s e et s e s et e e e eateeeaaaaaaas 26
4.1 NAVLIB_VIEWER .tttuuiiieetietuttuuieseesseestusesesesesssstssssseesseessasanssasesesssstsssseesseesssssnneeeeeeensmnnn 26
I |) I =1 I | 26

3Dconnexion Navigation Framework 2 of 26 3Dconnexion Internal

1. Introduction

1.1 Purpose
This document includes information on the 3Dconnexion Navigation Framework API (Navlib).

1.2 Target Audience

The target audience of this document is all software developers integrating support for
3Dconnexion products in programs with 3D visualization capabilities.

1.3 Document History

Version 0.1
e First document version. Includes preliminary information on the 3Dconnexion
Navigation framework API. The status of Navlib as of document version 1.0 is “work-in-
progress / experimental”.

Version 0.3
¢ Document changes to the matrix representation in navlib v0.7.0.
e APl naming change.
e Changed SiActionNode_t to SiActionNodeEx _t.

Version 0.4
e Document changes to samples.
e Added reference to the C# Navigation3D assembly.

Version 0.5
e Document the header and library files.

Version 0.6
e Document the probe functions.

Version 0.7
e Document the pivot properties.

Version 0.8
e Document the floor plane and units-to-meters properties.
e Change document classification to “public documentation”.

1.4 References

[1] 3Dconnexion, “3DxWare SDK 3.0 for Windows”; v. 3.0.2, revision 9261; 3Dconnexion
Documentation; 11-Sep-2013.

[2] UGS Corp, “input3d_action_interface.h” Documentation 2005.

3Dconnexion Navigation Framework 3 of 26 3Dconnexion Internal

2. Overview

The 3Dconnexion Navigation Framework (Navlib) is 3Dconnexion’s Application Programming
Interface (API) for applications currently under active development. The information included in
this document is subject to change.

2.1 3Dconnexion’s Input Devices

For a detailed explanation on the operation of 3Dconnexion’s input device see reference [1].
Note that 3Dconnexion Navigation does not require any additional 3Dconnexion Software
Development Kit (SDK) packages.

2.2 3Dconnexion Navigation Library

The 3Dconnexion Navigation Library (TDxNavlib) is a module that implements regular
navigation models used with a 3D mouse (object, camera, target-camera, “helicopter”) freeing
the program developers from having to re-implement the control features expected by 3D
mouse users.

The framework works by querying properties of the view and using these together with the 3D
Mouse input data to calculate updated property values and then putting these back to the
application.

Generally, the navigation library requires that the client interface implements both a getter and a
setter method for each property. A property that only has a getter is, thus, read only and one
with only a setter is write only. The library itself implements, with a couple of exceptions, both
methods for each property.

The complete list of properties and their types that the Navigation Framework uses is defined in
navlib.h in the array propertyDescription.

The 3Dconnexion Navigation Framework will be the base of 3Dconnexion’s SDKs for multiple
platforms.

2.3 Getting Started
The following assumes that the 3DxWare SDK is installed in <3SDXWARE_SDK_DIR>.

2.3.1 C/C++ Header Files

The header files for the C/C++ navigation library are located in the
<3DXWARE_SDK_DIR>\inc\navlib directory. For the compiler to find the header files
add <3DXWARE_SDK_DIR>\inc to the include directory path. Generally only a single
header file is required: To use the navlib add #include <navlib/navlib.h> to the source
file. When compiling for C++ the navigation library uses the namespace ‘navlib’.

navlib.h the main navigation library header file. Declares the exported
functions and constants.

navlib_error.h defines the types used for error handling.

navlib_types.h defines the types used in the navigation library.

navlib_defines.h macro definitions.

navlib_templates.h defines various template functions used in C++.

navlib_operators.h defines the C++ operator overloads for the navlib types

navlib_ostream.h defines the C++ ostream operators for the navlib types

Note: navlib_operators.h and navlib_ostream.h are not automatically included by
navlib.h.

3Dconnexion Navigation Framework 4 of 26 3Dconnexion Internal

2.3.2

2.3.3

2.3.4

2341

2.3.4.2

CI/C++ Library Files

The library files for the C/C++ navigation library are located in
<3DXWARE_SDK_DIR>\lib. For x64 applications link against <3 DXWARE_SDK_DIR>\
lib\x64\TDxNavlib.lib, for 32 bit link against <3DXWARE_SDK_DIR>\lib\x86\TDxNavlib
dib.

C# Assembly

For C# application development the TDx.SpaceMouse.Navigation3D.dll assembly is
provided that manages the marshalling to TDxNavLib.dll and exposes a C# interface.
The assembly is located in <3DXWARE_SDK_DIR>\lib\bin.

Note: The TDx.SpaceMouse.Navigation3D assembly is part of the 3Dconnexion
3DxWare driver and is installed by the driver distribution into the Global Assembly
Cache.

Interface Probe and Logging

Copy the navlib.xml configuration file to %appdata%\3Dconnexion\3Dxware\Cfg to
enable logging. The navlib will also export probe commands when the application opens
a connection that can be assigned to 3DMouse buttons to test the client interface. For
the commands to return meaningful results a model needs to be loaded and some part
of the model needs to be selected. The results are logged in
%localappdata%\3Dconnexion\3Dxware\<appname>.navlib.log. If a test fails, the
command is aborted.

navlib_probeGetters command

This command will invoke all the getter functions supplied by the client. The function
attempts to verify the data received such as the format and order of the matrices,
left/right-handed coordinate system etc.

navlib_probeViewport command

The viewport probe will query the viewport getter functions, check for data consistency
and attempt to zoom the viewport using the viewport mutator functions.

2.3.4.3 navlib_probeCameraMatrix command

The camera probe will query the camera related getter functions, attempt to navigate
the camera and verify that the camera has moved to the correct position.

2.3.4.4 navlib_probeMutators command

The probe will write values to the write only properties one after the other.

2.3.4.5 navlib_probeHittest command

The probe will invoke the hit-test functions. For the probe to succeed a loaded model is
required.

2.3.4.6 navlib_probelnterface command

The probe will invoke all the previous commands one after the other.

3Dconnexion Navigation Framework 5 of 26 3Dconnexion Internal

3. Usage

The 3Dconnexion Navigation Framework is implemented in file TDxNavLib.d11 which is part
of the 3Dconnexion driver installation.

3.1 3Dconnexion Navigation Framework Dependencies
The navlib depends on 3Dconnexion’s driver.

3.2 Coordinate System

The framework assumes a right-handed coordinate system with the Y-axis up and the camera
looking down its negative Z-Axis.

3.3 The Navlib ‘C’ Interface
The navlib interface consists of 4 functions.

3.3.1 NICreate function

Creates a new navigation instance. It specifies the name of the instance and the properties that
are available for querying and updating by the navigation framework.

Syntax:

long NICreate (nlHandle_t *pnh, const char* appname, accessor_t property_accessors][], size_t
accessor_count, const nlCreateOptions_t* options);

Parameters

pnh [out] Type: nlHandle t*
A pointer to a handle for the new navigation instance.

appname [in]
The name of the application

property_accessors [in]

An array of accessor_t structures containing the property name, accessor and mutator
functions the client exposes to the navigation instance.

accessor_count [in]
The number of accessor structures in the property _accessor parameter

options [in]

The initialization options for the connection. This may be NULL.

Return value

If the function succeeds the return value is 0 and pnh contains the handle to the navigation
instance.

If the function fails the return value is not 0 and pnh contains INVALID_NAVLIB_ HANDLE

Remarks

3Dconnexion Navigation Framework 6 of 26 3Dconnexion Internal

3.3.2 NIClose function

Closes an open navigation instance handle and destroys the navigation instance.

Syntax:

long nl_Close NIClose(nlHandle_t nh);
Parameters

nh [in] Type: nlHandle t
A valid handle to an open navigation instance.

Return value

If the function succeeds the return value is zero.
If the function fails the return value is nonzero.

Remarks

3.3.3 NIReadValue function

Read the value of a property cached in the navlib
Syntax:

long NIReadValue(nlHandle_t nh, property_t name, value_t *value);
Parameters

nh [in] Type: nlHandle t
A valid handle to the open navigation instance.

name [in] Type: property t
The name of the property whose value is being queried.

value [out] Type: value t*

A pointer to a value_t structure that contains the property value when the function
returns.

Return value

If the function succeeds the return value is zero and value contains the property data.
If the function fails or the property does not exist the return value is honzero.
Remarks

3.3.4 NIWriteValue function

Write the value for a property to the navlib instance.

Syntax:

long NIWriteValue(nlHandle_t nh, property_t name, const value_t *value);

3Dconnexion Navigation Framework 7 of 26 3Dconnexion Internal

Parameters

nh [in] Type: nlHandle t
A valid handle to the open navigation instance.

name [in] Type: property t
The name of the property whose value is being written in the navlib.

value [in] Type: const value t*
A pointer to a value_t structure that contains the new property value.

Return value

If the function succeeds the return value is zero.
If the function fails or the property does not exist the return value is nonzero.

Remarks

3.3.5 fnGetProperty_t prototype

Prototype for the accessor function defined in the client for the navlib to get the value of the
client property.

Syntax:

typedef long (cdecl *fnGetProperty_t)(const param_t param, const property_t name, value_t*
value);

Parameters

param [in] Type: param t
The value of the 4" member of the accessor structure passed in nl_Create.

name [in] Type: property t
The name of the property whose data is being retrieved.

value [in] Type: value t*

A pointer to a value_t structure that contains the property data when the function
returns.

Return value

If the function succeeds the return value is zero.
If the function fails or the property does not exist the return value is nonzero.

Remarks

3.3.6 fnSetProperty_t prototype

Prototype for the mutator function defined in the client for the navlib to set the value of the client
property.

3Dconnexion Navigation Framework 8 of 26 3Dconnexion Internal

Syntax:

typedef long (cdecl *fnSetProperty t)(const param_t param, const property t name, const
value_t* value);

Parameters

param [in] Type: param t
The value of the 4" member of the accessor structure passed in nl_Create.

name [in] Type: property t
The name of the property whose value is to be set.

value [in] Type: const value t*
A pointer to a value_t structure that contains the new property value.

Return value
If the function succeeds the return value is zero.

If the function fails or the property does not exist the return value is nonzero.

Remarks
3.4 Navlib Properties

The framework works by querying properties and using these together with the 3D Mouse input
data to calculate updated property values and then putting these back to the application. Not all
properties are required in every motion model that the framework implements. Dependent on
the properties available, Navlib will attempt to classify which motions models are available to the
user.

The Navlib queries and sets properties using the accessors and mutators supplied by the
application in the accessors parameter of the NICreate call. The application can explicitly write
the value of a property using the Navlib’s exported NIWriteValue function.

3.4.1 General properties

3.4.1.1 motion_k property

Specifies that a motion model is active.

Type: bool_t

The motion_k property is set to true by the navlib to notify the client that it is executing a motion
model and will update the camera matrix regularly. This is useful for clients that need to run an
animation loop. When the navlib has finished navigating the camera position it will set the

property to false. By writing false to the motion_k property of the navlib, a client may temporarily
interrupt a navigation communication and forces the Navlib to reinitialize the navigation.

3.4.1.2 active_k property

Specifies that the navigation instance is currently active.

Type: bool_t

3Dconnexion Navigation Framework 9 of 26 3Dconnexion Internal

Clients that have multiple navigation instances open need to inform the navlib which of them is
the target for 3D Mouse input. They do this by writing true to the active_k property of a
navigation instance.

3.4.1.3 coordinateSystem_k property

Specifies the transform from the client’s coordinate system to the navlib coordinate system.
Type: matrix_t

The Navigation Library coordinate system, as previously mentioned, is Y up, X to the right and Z
out of the screen. This property is queried directly after a new navigation instance is created.
This allows the client to specify the other properties using the coordinate system used in the
client. For the keep Y up (‘Lock Horizon’) algorithm to work correctly a non-identity matrix needs
to be specified whenever the ground plane is not the X-Z plane.

3.4.1.4 focus_Kk property

Specifies that the application has keyboard focus.
Type: bool_t
Clients that run in container applications via the NLServer proxy write this property to indicate

keyboard focus. This will set 3DMouse focus to the navlib connection.

3.4.1.5 transaction_k property

Specifies the navigation transaction.

Type: long

The Navigation Library can set more than one client property for a single navigation frame. For
example, when navigating in an orthographic projection possibly both the view affine and
extents will be modified depending on the 3DMouse input. The Navigation Library will set the
transaction_k property to a value >0 at the beginning of a navigation frame and to O at the end.
Clients that need to actively refresh the view can trigger the refresh when the value is set to 0.

3.4.1.6 frame_timing_source_k property

Specifies the source of the frame timing.
Type: long

By writing 1 to the frame.timing_source_k’ property, the client application informs the Navigation
Library that the client will be the source of the frame timing.

3.4.1.7 frame_time_k property

Specifies the time stamp of the animation frame in milliseconds.
Type: double

When the frame_timing_source_k property is 1, the client initiates a frame transaction by writing
the frame time property.

3.4.1.8 views_front_k property

3Dconnexion Navigation Framework 10 of 26 3Dconnexion Internal

Specifies the orientation of the view designated as the front view.

Type: affine_t

The Navlib will query this value when the connection is created and use it to orientate the model
to one of the ‘Front’, ‘Back’, ‘Right’, ‘Left’ etc. views in response to the respective pre-defined

view commands. If the orientation is redefined by the user the client must update the value in
the Navlib.

3.4.2 View properties

3.4.2.1 view_affine_k property

Specifies the matrix of the camera in the view.

Type: matrix_t

This matrix specifies the camera to world transformation of the view. That is, multiplying this
matrix on the right by the position (0, 0, 0) yields the position of the camera in world coordinates.
The navlib will, generally, query this matrix at the beginning of a navigation action and then set

the property per frame. The frame rate that the navlib attempts to achieve is related to the ysync
of the main display.

3.4.2.2 view_constructionPlane_k property

Specifies the plane equation of the construction plane as a normal and a distance (general form
of the equation of a plane).

Type: plane_t

This property is used by the Navigation Library to distinguish views used for construction in an
orthographic projection: typically, the top, right left etc. views. The Navigation Library assumes
that when the camera’s look-at axis is parallel to the plane normal the view should not be
rotated.

3.4.2.3 view_extents_k property

Specifies the orthographic extents the view in camera coordinates.
Type: box_t

The orthographic extents of the view are returned as a bounding box in cameral/view
coordinates. The navlib will only access this property if the view is orthographic.

3.4.2.4 view_fov_k property

Specifies the vertical field-of-view of a perspective camera/view in radians.

Type: double

3.4.2.5 view_frustum_k property

Specifies the frustum of a perspective camera/view in camera coordinates.

Type: frustum_t

3Dconnexion Navigation Framework 11 of 26 3Dconnexion Internal

The navlib uses this property to calculate the field-of-view of the perspective camera. The
frustum is also used in algorithms that need to determine if the model is currently visible. The
navlib will not write to this property. Instead, if necessary, the navlib will write to the view_fov_k
property and leave the client to change the frustum as it wishes.

3.4.2.6 view_perspective_k property

Specifies the projection of the view/camera.
Type: bool_t
This property defaults to true. If the client does not supply a function for the navlib to query the

view’s projection (which it will generally do at the onset of motion), then it must write the
property in the navlib if the projection is orthographic or when it changes.

3.4.2.7 view_target_k property (for internal use only).

Specifies the target constraint of the view/camera.

Type: point_t

The camera target is the point in space the camera is constrained to look at by a ‘lookat’
controller attached to the camera. The side effects of the controller are that panning the
constrained camera will also result in a camera rotation due to the camera being constrained to

keep the target position in the center of the view. Similarly panning the target will result in the
camera rotating.

3.4.2.8 view_rotatable_k property

Specifies whether the view can be rotated.

Type: bool_t

This property is generally used to differentiate between orthographic 3D views and views that
can only be panned and zoomed.

3.4.3 Model properties

3.4.3.1 model_extents_k property

This property defines the bounding box of the model in world coordinates.

Type: box_t.

The model extents is used by the navigation library for the zoom algorithms to fit the model to
the view or canvas. It is also used in the hit-testing algorithms to determine whether the model
is in front of the camera and can be hit as well as assessing the validity of a returned hit
position.

3.4.3.2 model_floorPlane_k property

This property defines the plane equation of a floor, using the general form of the equation of a
plane.

Type: plane_t.

3Dconnexion Navigation Framework 12 of 26 3Dconnexion Internal

The plane equation is used by the Navigation Library to determine the floor for the walk
navigation mode. In the walk navigation mode, the height of the eye is fixed to 1.5m above the
floor plane. The floor need not be parallel to the world ground plane. The Navigation Library
assumes that the value does not change during navigation. Should it change then the
application will have to write the new value to the Navigation Library.

3.4.3.3 model_unitsToMeters_k property

This property specifies the length of the model/world units in meters.

Type: double

The conversion factor is used by the Navigation Library to calculate the height above the floor in
walk mode as well as the speed in the first-person motion model. The Navigation Library
requires that this value does not change, and it is only queried once.

3.4.4 Selection properties

3.4.4.1 selection_affine_k property

Specifies the matrix of the selection.

Type: matrix_t

This matrix specifies the object to world transformation of the selection. That is, for row vectors
multiplying this matrix on the left by the position (0, 0, 0) yields the position of the selection in
world coordinates. The navlib will, generally, query this matrix at the beginning of a navigation
action that involves moving the selection, and then set the property once per frame. The frame

rate that the navlib attempts to achieve is related to the vsync of the main monitor, normally
about 60Hz.

3.4.4.2 selection_extents_k property
This property defines the bounding box of the selection in world coordinates.
Type: box_t

The extents of the selection are returned as a bounding box in world coordinates. The navlib will
only access this property if the selection_empty_k is false.

3.4.4.3 selection_empty_k property
This property defines whether the selection is empty.
Type: bool_t

When true, nothing is selected.

3.4.5 Settings properties

3.4.5.1 settings_k property

3Dconnexion Navigation Framework 13 of 26 3Dconnexion Internal

The settings_k property is indirectly used to query and write settings to the 3Dconnexion
Properties Ul.

Type: string_t

The property settings_k does not exist in the Navlib. To read or write a property in the
application profile, the settings_k needs to be appended with “.” and the name of the profile
property. l.e. “settings.MoveObjects” is used to read or write the value of the “MoveObjects”
property in the profile settings.

3.4.5.2 settings_changed_k property

This property defines the change revision of the profile settings.
Type: long
This property is incremented when the settings change. If the client needs to know the value of

a 3Dconnexion profile setting it should re-read the corresponding value when
settings_changed_k is changed.

3.4.6 Mouse pointer properties and hit testing

The navigation library includes navigation algorithms that are dependent on the size of and the
distance to the model being viewed. This can be at the view center or at the position of the
mouse cursor. When these algorithms are activated, the navigation library may require the client
to perform hit-testing. In this case the navigation library will set up a ray and query the nearest
hit.

3.4.6.1 pointer_position_k property

This property defines the position of the mouse cursor (possibly on the projection plane) in world
coordinates. The property is read only.

Type: point_t.
In OpenGL the position would typically be retrieved using gluUnProject with winZ set to a

value >0.0.

3.4.6.2 hit_lookfrom_k property

The hit_lookfrom_k property defines the origin of the ray used for hit-testing in world
coordinates.

Type: point_t.
This property is set by the navlib.

3.4.6.3 hit_direction_k property

The hit_direction_k property defines the direction of the ray used for hit-testing in world
coordinates.

Type: vector_t.

This property is set by the navlib.

3Dconnexion Navigation Framework 14 of 26 3Dconnexion Internal

3.4.6.4 hit_aperture_k property

The hit_aperture_k property defines the diameter of the ray used for hit-testing.
Type: float.
This property is set by the navlib. For perspective projections this is the diameter of the ray on

the near clipping plane.

3.4.6.5 hit_selectionOnly_k property

The hit_selectionOnly_k property specifies whether the hit-testing is to be limited solely to the
current selection set.

Type: bool_t.

This property is set by the navlib.

3.4.6.6 hit_lookAt_k property

The hit_lookAt_k property specifies the point of the model that is hit by the ray originating from
the hit_lookFrom_k position.

Type: point_t
This property is queried by the navlib. The navlib will generally calculate if it is possible to hit a

part of the model from the model_extents_k and selection_extents_k properties before setting
up the hit-test properties and querying this property.

3.4.7 Pivot properties

In order to help the user understand the effects of rotating the 3DMouse cap a widget marking
the center of rotation should be displayed.

3.4.7.1 pivot_position_k property
The pivot_position_k property specifies the center of rotation of the model in world coordinates.

Type: point_t

This property is normally set by the navlib. The application can manually override the navlib
calculated pivot by writing a specific pivot position that the navlib will use until it is cleared again
by the application.

3.4.7.2 pivot_visible_k property

The pivot_visible_k property specifies whether the pivot widget should be displayed.

Type: bool_t

In the default configuration this property is set by the navlib to true when the user starts to move
the model and to false when the user has finished moving the model.

3Dconnexion Navigation Framework 15 of 26 3Dconnexion Internal

3.4.7.3 pivot_user_k property

The pivot_user_k property specifies whether an application specified pivot is being used.

Type: bool_t

To clear a pivot written by the application and to use the pivot algorithm in the navlib, the
application writes false to this property. To override the navlib pivot algorithm the application can
either write true to this property, which will cause the navlib to query the pivot position it should
use, or the application can write the pivot position directly using the pivot_position_k property.
The navlib’s pivot algorithm continues to be overridden until the application writes false to this

property.

3.4.8 Application command properties

Application commands are actions that an application exposes to the user. Normally these will
be invoked from a menu or toolbar in the application. The application command extension in the
navlib allows the application to expose these commands to the 3D Mouse enabling the user to
assign them to 3D Mouse buttons. The commands can either be exposed as a single blob or
grouped into sets, whereby only one set can be the active set — this can be useful when the
application workflow limits the actions a user can perform, for example in a cad application
when the user is sketching.

3.4.8.1 commands_tree_k property

This property defines a set of commands. Command sets can be considered to be button
banks. The set can be either the complete list of commands that are available in the application
or a single set of commands for a specific application context. The navlib will not query the
application for this property. It is the responsibility of the application to update this property
when commands are to be made available to the user.

Type: SiActionNode_t*

3.4.8.2 commands_activeSet_k property

In applications that have exposed multiple command sets this property needs to be written to
define the command set that is active. The navlib will not query the application for this property.
It is the responsibility of the application to update this property when the set of commands need
to be changed. Normally this will be due to a change in application state and may correspond to
a menu/toolbar change. If only a single set of commands has been defined, this property
defaults to that set.

Type: string_t

3.4.8.3 commands_activeCommand_k property

When the user presses a 3D Mouse button that has been assigned an application command
exposed by the commands_tree_k property, the navlib will set this property. The string will be
the corresponding id passed in the commands_tree_k property. Generally, the navlib will set this
property to an empty string when the corresponding button has been released.

Type: string_t

3Dconnexion Navigation Framework 16 of 26 3Dconnexion Internal

3.4.8.4 images_k property

Images can be associated with commands. These are exposed to the 3Dconnexion Ul elements
by updating the ‘images’ property.

Type: imagearray _t

3Dconnexion Navigation Framework 17 of 26 3Dconnexion Internal

3.5 Structures

3.5.1 box_t

Defines a box using two diagonally opposing vertices.

Syntax

typedef struct {
point_t min, max;
} box_t;

Members

min Type: point t
Position of the vertex with the lowest coordinate values.

max Type: point t
Position of the vertex with the highest coordinate values.

Remarks

3.5.2 accessor_t

Specifies the client accessor and mutator functions the navlib can invoke to access the
application’s property values.

Syntax

typedef struct tagAccessor {
property_t name;
fnGetProperty_t fnGet;
fnSetProperty_t fnSet;
param_t param;

} accessor_t;

Members

name Type: property t
The name of the property.

fnGet Type: fnGetProperty t
The accessor function for the navlib to call to retrieve the value of the property.

fnSet Type: fnSetProperty t
The mutator function for the navlib to invoke to update the value of the property.

param Type: param t
A user defined value that the navlib will pass as the first parameter of fnGet or fnSet.

Remarks

An array of accessor_t structures is passed in the NICreate function which creates the
navigation instance. The array passed defines the interface supplied by the caller for the navlib.
To limit the access to either read- or write-only, the corresponding member of the structure can
be set to O.

3Dconnexion Navigation Framework 18 of 26 3Dconnexion Internal

3.5.3 imagearray_t

Defines a list of images.

Syntax

typedef struct
{

const SiImage t *p;
size t count;
} imagearray_t;

Members

p Type: Silmage t*
Array of Silmage_t instances.

count Type: size t
Number of Silmage_t instances.

Remarks

3.5.4 frustum _t

Defines a frustum.

Syntax

typedef struct {
double left, right, bottom, top, nearVal, farval;
} frustum_t;

Members

left Type: double
The coordinate of the left vertical clipping plane in camera coordinate space

right Type: double
The coordinate of the right vertical clipping plane in camera coordinate space

bottom Type: double
The coordinate of the bottom horizontal clipping plane in camera coordinate space

top Type: double
The coordinate of the top horizontal clipping plane in camera coordinate space

nearVal Type: double
The distance to the near clipping plane in camera coordinate space

farVal Type: double
The distance to the far clipping plane in camera coordinate space

Remarks

This is the equivalent of the parameters passed in the OpenGL function glFrustum. The
navlib also uses this property to calculate the field-of-views of the camera. Thus, the
values passed need to be consistent with the other camera values i.e.

3Dconnexion Navigation Framework 19 of 26 3Dconnexion Internal

tan (fov_h/ 2) = (right-left) / (2 * nearVal)
and
tan (fov_v / 2) = (top-bottom) / (2 *nearVal)

3.5.5 matrix_t

Specifies a 4x4 column major matrix.

Syntax

typedef struct {
double moo, mol, mo2, mo3
, mlo, mlil, ml12, ml3
, m20, m21l, m22, m23
, m30, m31, m32, m33;
} matrix_t;

Members

mxy Type: double

Remarks

3.5.6 nlCreateOptions_t

Specifies the navlib initialization options.

Syntax
typedef struct tagNlCreateOptions {
uint32_t size; /* sizeof (nlCreateOptions_t) */
bool bMultiThreaded; /* false (default) = singlethreaded */

nlOptions_t nlOptions; /* combination of the nlOptions */
} nlCreateOptions_t;

Members

size Type: uint32 t
The size of the structure

bMultiThreaded Type: bool
false (default) — single-threaded.

nlOptions Type: nlOptions t

Remarks

An nICreateOptions_t structure is passed in the nl_Create function. Specifying
bMultithreaded=false will make the navlib query and set properties in the same thread that
NICreate was invoked on.

3.5.7 nlOptions_t

Specifies navlib behavior options.

Syntax

3Dconnexion Navigation Framework 20 of 26 3Dconnexion Internal

typedef enum nlOptions {
none = 0,
nonqueued_messages = 1,
column_vectors = 2

} nlOptions_t;

Remarks

3.5.8 plane_t

Defines a plane in 3D space.

Syntax

typedef struct {
vector_t n;

double d;
} plane_t;
Members
n Type: vector t

the normal to the plane

d Type: double
Distance of the plane from the origin. Positive if the origin lies above the plane, negative
if below.

Remarks

A point p on the plane satisfies the equation n.(p-point_t(0,0,0))+d=0;

3.5.9 point_t

Specifies a 3D position.

Syntax

typedef struct {
double x, y, z;
} point_t;

Members

X Type: double
X coordinate

y Type: double
Y coordinate

z Type: double
Z coordinate

Remarks

3Dconnexion Navigation Framework 21 of 26 3Dconnexion Internal

3.5.10

SiActionNodeEx_t

The structure represents a node of the action tree for the action set.

Syntax

typedef struct siActionNodeEx_s

{
uint32_t size;
SiActionNodeType_t type;
struct siActionNode s *next;
struct siActionNode s *children;
const char *id;
const char *label;
const char *description;

} SiActionNodeEx_t;

Members

size

Type: uint32 t
the size field must always be the byte size of siActionNodeEx_s

type Type: siActionNodeType t
The type field specifies one of the following values.
SI_ACTIONSET_NODE
SI_CATEGORY_NODE
SI_ACTION_NODE
The root node (and only the root node) of the tree always has type
SI_ACTIONSET_NODE. Only the leaf nodes of the tree have type SI_ACTION_NODE.
All intermediate nodes have type SI_ CATEGORY_NODE.
next Type: siActionNode t*
pointer to the next node
children Type: siActionNode t*
pointer to the child nodes
id Type: const char*
The id field specifies a string identifier for the action set, category, or action represented
by the node. The field is always non-NULL and constructed from a basic set of printable
ASCII characters: "A" to "Z" (27 uppercase letters), "a" to "z" (27 lowercase letters), "0"
to "9" (digits), " " (underscore character), "-" (dash character) and "." (dot or period
character). This string needs to remain constant across application sessions and across
application releases. The string must not change with the application language or other
Ul localization. The id is used by the application to identify an action.
label Type: const char*

The label field specifies a UTF8 localized/internationalized description for the action set,
category, or action represented by the node. The label field can be NULL for the root
and intermediate category nodes that are not explicitly presented to users. All leaf
(action) and intermediate nodes containing leaf nodes have non-NULL labels. If the
application only has a single action tree set, then the label of the root (context) node
can also be NULL.

description Type: const char*

The description field specifies a UTF8 localized/internationalized tooltip for the action
set, category, or action represented by the node. The description field can be NULL for

3Dconnexion Navigation Framework 22 of 26 3Dconnexion Internal

the root and intermediate category nodes that are not explicitly presented to users. Leaf
(action) should have non-NULL description.

Remarks

A set of actions is composed of a linked list of SiActionNodeEXx _t structures. Sibling nodes are
linked by the next field of the structure and child nodes by the children field. The root node of
the tree represents the name of the action set while the leaf nodes of the tree represent the
actions that can be assigned to buttons and invoked by the user. The intermediate nodes
represent categories and sub-categories for the actions. An example of this would be the menu
item structure in a menu bar. The menus in the menu bar would be represented by the
SiActionNodeEXx_t structures with type SI_ CATEGORY_NODE pointed to by each successively
linked next field and the first menu item of each menu represented by the structure pointed to by
their child fields (the rest of the menu items in each menu would again be linked by the next
fields).

3.5.11 Silmage_t

Describes an image.

Syntax
typedef struct silImage s
{
uint32_t size;
SiImageType t type;
const char *id;
union {

struct siResource s resource;
struct siImageFile_s file;
struct siImageData_s image;
struct siImageGlyph_s glyph;
¥
} SiImage_t;

Members

size Type: unint32 t
Sizeof Silmage_t.

type Type: SiImageType t
Defines the type of data in Silmage_t i.e. which of the structures in the union contains
the image data.

id Type: const char*
Application defined zero terminated string used to identify the image. To associate and
image with a command, the image and command ids need to be identical.

Remarks

3.5.12 value_t

A variant structure
Syntax

typedef struct value {
propertyType_t type;

3Dconnexion Navigation Framework 23 of 26 3Dconnexion Internal

union

{

void *p;

bool_t b,

long 1;

float f;

double d;

point_t position;
vector_t vector;
plane_t plane;
box_t box;
frustum_t frustum;
matrix_t matrix;

const SiActionNode_ t* pnode;

string t string_;

A 32-bit Boolean value. A value of 0 (all bits 0) indicates false.

¥
} value_t;
Members
type Type: propertyType t
The type of data contained in the union.
b Type: bool t
Remarks

3.5.13 vector_t

Specifies a 3D direction.
Syntax

typedef struct {
double x, y, z;
} vector_t;

Members

X Type: double
X value

y Type: double
Y value

z Type: double
Z value

Remarks

3Dconnexion Navigation Framework

24 of 26

3Dconnexion Internal

3.6

3.6.1

3.7

The Navlib C# Interface

Navigation3D Assembly

The Navigation3D assembly provides C# applications with a managed interface to the
native navigation library. All the required marshaling between managed and
unmanaged code is implemented in the Navigation3D class. To enable 3D navigation
the implementer is required to instantiate a Navigation3D class with an implementation
of the INavigation3D interface.

For more information on the Navigation3D assembly and implementing the
INavigation3D see the 3DxTestNL sample and the documentation
TDx.SpaceMouse.Navigation3D.pdf

Frame Rate and Animation

When navigating a camera with the SpaceMouse, the view needs to be continuously
updated frame by frame with new scene data to give the impression of continuous
movement. The Navigation Library supports two modes for controlling the frame rate of
the resulting animation.

For applications that already continuously render the scene, such as games, game
engines, web applications, etc., the frame_timing_source Kk property should be set to 1.
By setting frame_timing_source k to 1, the client application informs the Navigation
Library that it will control the animation frame rate and be the source of the timing for
the frames.

The Navigation Library indicates the beginning of a SpaceMouse movement by setting
the motion k property to true. Then, before each frame is due to be drawn, the client
needs to set the frame_time _k property with the new frame's time stamp. This causes
the Navigation Library to calculate new frame property values from the previous values,
using the frame time, 3dmouse input data and the set navigation mode.

The actual epoch used for the frame's time stamp is not of importance as all
calculations are based on the time duration since the previous frame. However, the
requirements for the source clock are that it must be stable, monotonic and that the
frame time units are in milliseconds.

Applications that only render the scene in response to a scene, view, or model change,
for example CAD applications, should leave the frame_timing_source k property at the
default value of 0. The Navigation Library will then use the monitor vsync as the timing
source.

Irrespective of the value of the frame_timing_source k property, when the Navigation
Library changes properties of the camera for a frame it will first set the transaction k
property to non-zero, then the frames properties, such as the camera affine, view
extents, etc. and lastly the transaction_k property back to zero to indicate that all the
frame values have been set. When the client application needs to render the view it
should do so when the Navigation Library sets the transaction _k property back to zero.

3Dconnexion Navigation Framework 25 of 26 3Dconnexion Internal

4. Sample Code
4.1 navlib_viewer

The MFC sample demonstrates the implementation of a viewer connecting to the navlib. The
sample uses a C++ wrapper class to the navlib C interface.

Mainfrm.cpp

The CMainFrame class creates and closes the navigation connection, implements the
accessors and mutators required by the navlib interface, as well as exporting the commands
and images required for assigning commands to the 3DMouse buttons.

Requirements

3DxWare 10.5.6, 3DxWare SDK 4.0, Visual Studio 2015, MFC

4.2 3DxTestNL

This C# Model-View-ViewModel sample demonstrates the implementation of a 3D WPF viewer
connecting to the navlib.

The INavigation3D interface is implemented by the NavigationModel partial classes in the theme
based files NavigationModel.cs, ModelCallbacks.cs, Space3DCallbacks.cs, ViewCallbacks.cs,
PivotCallbacks.cs and HitCallbacks.cs.

The MainExecutor class creates a NavigationModel instance and demonstrates how to export
commands and images for assigning application commands to 3DMouse buttons and handle
command activation events.

Requirements

3DxWare 10.5.6, 3DxWare SDK 4.0, Visual Studio 2015, C# 6.0

3Dconnexion Navigation Framework 26 of 26 3Dconnexion Internal

