
Introduction to Computational Astrophysics

Helge Todt

Astrophysics
Institute of Physics and Astronomy

University of Potsdam

SoSe 2019

H. Todt (UP) Computational Astrophysics SoSe 2019 1 / 25

Techniques of
parallelization

H. Todt (UP) Computational Astrophysics SoSe 2019 2 / 25

Neutron transport with packets I

So far: single neutron n0

Improvement/speed up: consider “neutron packets”, i.e. we follow an
ensemble of neutrons (which advances with random `, cos θ as before)
→ determine fraction of the scattered and captured neutrons

1. scattering: fraction of scattered n0: ps, fraction of absorbed n0: pc

2. scattering: fraction of scattered n0: p2
s , fraction of absorbed n0: pcps

mth scattering fraction of scattered n0: pm
s , fraction of absorbed n0: pcpm−1

s

so, after mth scattering:
→ total fraction of captured neutrons:
fc = pc + pcps + pcp2s + . . .+ pcpm−1

s
→ total fraction of scattered neutrons:
fs = pm

s
→ if position x < 0: add fs to frefl
→ if position x > t: add fs to ftrans

H. Todt (UP) Computational Astrophysics SoSe 2019 3 / 25

Neutron transport with packets II

→ see also: Lucy (2002), A&A, 384, 725: “Monte Carlo transition
probabilities”

instead of individual photons, use energy packets of same frequency ν
(ε(ν) = nhν) and same energy ε0 → different n

scattering: νe = νa

absorption leads to re-emission following: ε(νe) = ε(νa), no packet (=
energy) lost or created → divergence-free radiation field

macro-atoms with discrete internal states, activation via r-packet
(radiative) of appropriate CMF frequency or k-packet (kinetic); active
macro-atom performs internal transitions and gets inactive by emission
of r- or k-packet

H. Todt (UP) Computational Astrophysics SoSe 2019 4 / 25

Parallelization

H. Todt (UP) Computational Astrophysics SoSe 2019 5 / 25

Parallelization

Many runs in MC simulations required for reliable conclusions
Often: Result of one run (e.g., path of a neutron through a plate)
independent from other runs

→ Idea: acceleration by parallelization
Problem: concurrent access to memory resources, i.e. variables (e.g.,
ns, frefl)
Solution: special libraries that enable multithreading (e.g., OpenMP) or
multiple processes (e.g., MPI) for one program

→ insert: pipelining, vectorization, parallelization

H. Todt (UP) Computational Astrophysics SoSe 2019 6 / 25

CPU Performance

What influences the performance of a CPU (= runtime of your code)?
architecture/design: out-of-order execution (all x86 except for Intel
Atom), pipelining (stages), vectorization units (width)
cache sizes (kB . . .MB) and location: L1 cache for each core, L3 for
processor
clock rate (∼GHz): only within a processor family usable for
comparison due to different number of instruction per clock (IPC) of
design → impact on single-thread performance
number of cores (1 . . .): → impact on multi-thread performance

H. Todt (UP) Computational Astrophysics SoSe 2019 7 / 25

Pipelining I

splitting machine instruction into a series

independent execution of
instructions, each consisting of

instruction fetching (IF)
instruction decoding (ID) +
register fetch
execution (EX)
write back (WB)

operations of instructions are
processed at the same time → quasi
parallel execution, higher throughput

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
ip

e
lin

e
Completed

instructions

0 1 2 3 4 5 6 7 8

Clock cycle

By en:User:Cburnett - Own workThis vector image was created
with Inkscape., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1499754

H. Todt (UP) Computational Astrophysics SoSe 2019 8 / 25

Pipelining II

NetBurst disaster
Pentium 4 (2000-2008) developed to achieve > 4GHz (goal: 10 GHz)
clockrate by a several techniques, i.a., long pipeline:

20 stages (Pentium III: 10) up to 31 stages (Prescott core)
smaller number of instructions per clock (IPC) (!)
increased branch misprediction (also only 10%, improved by 33% for
Pentium III)
larger penalty for misprediction

→ compensated by higher clock rate
higher clock rate → higher power dissipation, especially for 65 (Presler,
Pentium D), 90 (Prescott) up to 180 nm (Williamette) structures
→ power barriere at 3.8 GHz (Prescott)

H. Todt (UP) Computational Astrophysics SoSe 2019 9 / 25

SSE and AVX I
D

a
t
a
 P

o
o
l

Instruction Pool

PU

PU

PU

PU

SIMD

SSE - Streaming SIMD
Extensions (formerly: ISSE -
Internet SSE)
SIMD - Single Instruction
Multiple Data (→ cf. Multivec,
AMD3Dnow!),
introduced with Pentium III
(Katamai, Feb. 1999)

H. Todt (UP) Computational Astrophysics SoSe 2019 10 / 25

SSE and AVX II

enables vectorization of instructions (not to be confused with
pipelining or parallelization), often new, complex machine instructions
required,
e.g., PANDN → bitwise NOT + AND on packed integers

comprises 70 different instructions, e.g., ADDPS – add packed
single-precision floats (two “vectors” each with 4 32 bit) into a 128 bit
register

works with 128 bit registers (3Dnow! only 64 bit), but first execution
units (before Core architecture) only with 64 bit

AVX - Advanced Vector Extensions with 256 bit registers, theoretically
doubled speed! since Sandy Bridge (Intel Core 2nd generation, e.g.,
i7-2600K) and Bulldozer (AMD)
→AVX-512 with 512 bit registers in Skylake (6th generation, e.g.,
Core i7-6700)

H. Todt (UP) Computational Astrophysics SoSe 2019 11 / 25

SSE and AVX III

supported by all common compilers, e.g.,
ifort -sse4.2
g++ -msse4.1

very easy (automatic) optimization, e.g., for unrolled loops
→ vectorization

Caution!
Different precisions for SSE-doubles (e.g., 64 bit) and FPU-doubles
(80 bit), especially for buffering, so results of doubles, e.g.,
xx = pow(x,2) ;
sqrt(xx - x*x) ;
usually not predictable

H. Todt (UP) Computational Astrophysics SoSe 2019 12 / 25

Multi-cores

originally one core per processor, sometimes several processors per
machine/board (supercomputer)
many units (ALU, register) already multiply existing in one processor
first multi-core processors: IBM POWER4 (2001); desktop
→ Smithfield (2005), e.g., Pentium D
Hyper-threading (HT): introduced in Intel Pentium 4 → for better
workload of the computing units by simulation of another, logical
processor core (compare: AMD Bulldozer design with modules)
today: up to 32 cores for desktop (AMD Zen: Ryzen Threadripper
2990WX) or server (AMD Epyc 75. . .), or even more, 72 (Xeon Phi
7290)
arms race of cores instead of clock rate (NetBurst disaster)

H. Todt (UP) Computational Astrophysics SoSe 2019 13 / 25

Multi-cores and compilers

parallelization done by multithreading (from thread)
because of “The free lunch is over” → no simple acceleration more of
a single-thread program (exceptions: Turbo Boost, Turbo Core, in
some ways larger caches may help) by pure increase in clock rate
supported by, e.g., OpenMP (shared memory), see below
different from: multiprocessor (NUMA: Non-Uniform Memory Access)
parallelization via MPI → distributed computing (cf. Co-array Fortran)

H. Todt (UP) Computational Astrophysics SoSe 2019 14 / 25

GPGPU

General-purpose computing on graphics processing units → further
development of graphic cards

e.g., Tesla, Fermi (Nvidia)
→ Piz Daint (Swiss, 5th in Top500) with 5 272 Nvidia Tesla K20X
processors (each with 2 688 CUDA cores) + 5 272 × 8 Xeon Cores
reaches more than 25 petaflops
so-called shaders → highly specialized ALUs, often only with single
precision (opposite concept: Intel’s Larrabee)
programming (not only graphics) via CUDA (Nvidia) or OpenCL
(more general)
OpenCL → parallel programming for arbitrary systems, also NUMA
(non-uniform memory access), but very abstract and complex concept
and also complicated C-syntax
CUDA support, e.g., by PGI Fortran compiler → simple acceleration
without code modifications

H. Todt (UP) Computational Astrophysics SoSe 2019 15 / 25

OpenMP

H. Todt (UP) Computational Astrophysics SoSe 2019 16 / 25

OpenMP I

OpenMP - Open Multi-Processing

for shared-memory systems (e.g., multi core)
directly available in g++, gfortran, and Intel compilers
insertion of so-called OpenMP (pragma) directives :

Example: for loop
C++
#include <omp.h>
...

#pragma omp parallel for
for (...)
{ ... }

Fortran
USE omp_lib ! ifort

!$OMP PARALLEL DO
DO i = 1, n
....

ENDDO
!$OMP END PARALLEL DO

instructs parallel execution of the for loop, i.e., there are copies of the
loop (different iterations) which run in parallel
→ only the labeled section runs in parallel

H. Todt (UP) Computational Astrophysics SoSe 2019 17 / 25

OpenMP II

→ pragma directives are syntactically seen comments, i.e., invisible for
compilers without OpenMP support

realization during runtime by threads

number of used threads can be set, e.g., by environment variable

export OMP_NUM_THREADS=4

→ obvious: per core only one thread can run at the same time (but:
Intel’s hyper-threading, AMD’s Bulldozer design) → reasonable:

number of threads = number of cores

Caution!
Distributing and joining of threads produces some overhead in CPU /
computing time (e.g., copying data) and is therefore only efficient for
complex tasks within each thread. Otherwise multithreading can slow down
program execution.

H. Todt (UP) Computational Astrophysics SoSe 2019 18 / 25

OpenMP III

Including the OpenMP library:

C++

#ifdef _OPENMP
#include <omp.h>
#endif

Fortran

! only needed for ifort:
!$ use omp_lib

→ instructions between #ifdef _OPENMP and #endif (Fortran: following
!$) are only executed if compiler invokes OpenMP

Compile via
g++ -fopenmp

gfortran -fopenmp
ifort -openmp

H. Todt (UP) Computational Astrophysics SoSe 2019 19 / 25

OpenMP IV

useful: functions specific for OpenMP, e.g., for number of available cores,
generated (maximum) number of threads, and current number of threads:

omp_get_num_procs() // number of processor cores
omp_get_max_threads() // max. number of threads generated
omp_get_num_threads() // number of the current thread

H. Todt (UP) Computational Astrophysics SoSe 2019 20 / 25

OpenMP V

Very important: organization of the visibility of the involved data, i.e.
assign attributes shared or private to thread variables

shared
→ default
data are visible in all threads and can be modified

in contrast to:

private
each thread has its own copy of the data, which are invisible for other
threads, especially from outside of the parallel section

moreover, there are further so-called data clauses, e.g., firstprivate
(initialization before the parallel section), lastprivate (last completed
thread determines the value of the variable after the parallel section) and
many more . . .

H. Todt (UP) Computational Astrophysics SoSe 2019 21 / 25

OpenMP VI

Example private
C++:
int j, m = 4 ;
#pragma omp parallel for private (i,j)
for (int i = 0 ; i < max ; i++)
{ j = i + m ;

... ;
}

Fortran:
!$OMP OMP PARALLEL DO PRIVATE (i,j)

DO i = 0, max
j = i + m
...

ENDDO
!$OMP END PARALLEL DO

→ loop variable i and variable j as “local” copies in each thread
→ variable m implicitly shared

H. Todt (UP) Computational Astrophysics SoSe 2019 22 / 25

OpenMP VII

Some more OpenMP directives:

#pragma omp parallel
→ parallel section also possible without a loop, section is executed per
thread, { } block required:

C++:

#pragma omp parallel
{
cout << "Hi!" << endl ;

}

Fortran:

!$OMP PARALLEL
print *, ’Hi!’

!$OMP END PARALLEL

#pragma omp critical
→within a parallel section
is executed by each thread, but never at the same time (avoiding race
conditions for shared resources)

H. Todt (UP) Computational Astrophysics SoSe 2019 23 / 25

OpenMP VIII

schedule(runtime)
e.g.,
#pragma omp parallel for schedule (runtime)

→way of distributing the parallel section to threads is defined at
runtime, e.g., by (bash)
export OMP_SCHEDULE "dynamic,1"
→ each thread gets a chunk of size 1 (e.g., one iteration) as soon as it is
ready
export OMP_SCHEDULE "static"
→ the parallel section (e.g., loop iterations) is divided by the number of
threads (e.g., 4) and each thread gets a chunk of the same size

H. Todt (UP) Computational Astrophysics SoSe 2019 24 / 25

OpenMP IX

Useful for performance measurement:

omp_get_wtime() // → returns the so-called wall clock time (not the cpu
time)

omp_get_thread_num() // → returns the number of the current thread

Weblinks:
http://www.openmp.org/
especially the documentation of the specifications:
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

H. Todt (UP) Computational Astrophysics SoSe 2019 25 / 25

http://www.openmp.org/
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

	Introduction and review
	From the two-body problem to N-body simulations
	Monte-Carlo-Simulations and transport processes
	Processor Features
	Parallelization in C++/Fortran

