

TB-04631-001_v03 | February 2011

Technical Brief

10 AND 12-BIT GRAYSCALE
TECHNOLOGY

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | ii

DOCUMENT CHANGE HISTORY

TB-04631-001_v03

Version Date Authors Description of Change
01 April 17, 2009 SV, SM Initial Release

02 February 9, 2010 SV, SM Addition of Table 2

03 February 7, 2011 SV, SM • Updated “System Specification” section
• Updated “Supported Connectors” section
• Updated Table 3 and Table 4
• Removed “Moving and Spanning Windows
Across Displays” section
• Removed “Targeting Specific GPUs for
Rendering” section
• Added “Directed GPU Rendering” section
• Updated “Implementation Details” section

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | iii

TABLE OF CONTENTS

10 and 12-Bit Grayscale Technology .. 1
Introduction .. 1
System Specification ... 3

Supported Graphics Boards ... 3
Supported Monitors .. 4
Supported Connectors ... 5
Grayscale Monitor Settings ... 6

Grayscale Implementation ... 7
Driver Layer ... 7
Application Layer .. 8

Multi-Display Configurations .. 10
Multi-GPU Compatibility ... 10
Multiple Display Setup .. 11
Mixing Grayscale and Color Displays .. 14
Directed GPU Rendering ... 16

Typical Multi-Display Configurations .. 17
Case 1. Two 5 MP Grayscale Displays Driven by One GPU 17
Case 2. Four 5 MP Grayscale Displays Driven by Two GPUs 18

References .. 19
Implementation Details ... 19

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | iv

LIST OF FIGURES

Figure 1. 10 MPixel, 10-Bit Diagnostic Mammography Display 2
Figure 2. Application Enhanced Using Multiple Displays 2
Figure 3. DisplayPort to Single-Link DVI Adapter (Passive) 5
Figure 4. DisplayPort to Dual-Link DVI Adapter (Active) 5
Figure 5. Enable 5 MP Grayscale Monitor to Display Higher Resolution 6
Figure 6. Driver Converts and Packs Desktop from 24-Bit Color to 12-Bit Gray 7
Figure 7. Application Level Texture Setup for 10 and 12-Bit Grayscale Display 9
Figure 8. Display Properties Before and After Displays are Enabled 12
Figure 9. Setting Render GPU from NVIDIA Control Panel................................. 16
Figure 10. 10 MP Grayscale Display Configuration ... 17
Figure 11. Three GPUs Driving a 20 MP Grayscale Display 18

LIST OF TABLES

Table 1. Quadro Graphics Boards with 10 and 12-Bit Grayscale Support 3
Table 2. Grayscale Capable Display Panels with Supported Resolution and Pixel

Depth ... 4
Table 3. Multi-GPU Compatibility .. 11
Table 4. Characteristics for 10 MP Setup ... 17
Table 5. Characteristics for the 20 MP Setup .. 18

NVIDIA CONFIDENTIAL
10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 1

10 AND 12-BIT GRAYSCALE TECHNOLOGY

INTRODUCTION

Advances in sensor technology and image acquisition techniques in the field of
radiology are producing high bit depth grayscale images in the range of 12 to 16-bit per
pixel. At the same time, the adoption of displays with native support for 10 and 12-bit
grayscale is growing. These affordable displays are DICOM[1] conformant to preserve
image quality and consistency. Furthermore, tiling together multiple such displays
enables side-by-side digital study comparisons driven by a single system.

Standard graphics workstations however are limited to 8-bit grayscale, which provides
only 256 possible shades of gray for each pixel sometimes obscuring subtle contrasts in
high density images. Radiologists often use window-leveling techniques to identify the
region of interest that can quickly become a cumbersome and time-consuming user
interaction process.

NVIDIA®’s 10–bit and 12-bit grayscale technology allows these high quality displays to
be driven by standard NVIDIA Quadro® graphics boards preserving the full grayscale
range. By using “pixel packing” the 10-bit or 12-bit grayscale data is transmitted from
the Quadro® graphics board to a high grayscale density display using a standard DVI
cable. Instead of the standard three 8-bit color components per pixel, the pixel packing
allows two 10 or 12-bit pixels to be transmitted, providing higher spatial resolution and
grayscale pixel depth as compared to an 8-bit system.

As specialty hardware is not required, NVIDIA’s 10-bit grayscale technology is readily
available for use with other radiology functions and easy to support amongst a wide
range of grayscale panels from various manufacturers. In a preliminary study
performed on 10 radiologists using Dome E5 10-bit vs. E5 8-bit displays in conjunction
with Three Palms 10-bit, OpenGL accelerated WorkstationOne mammography
application, radiologists’ performance was statistically significant on the 10-bit enabled
display systems, some experiencing triple the read time speedup.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 2

This technical brief describes the NVIDIA grayscale technology, the system
requirements and setup. It also aims to guide users through common pitfalls that arise
when extending to multi-display and multi graphics processing unit (GPU)
environments routinely used in diagnostic imaging and recommends best practices.

Figure 1shows the latest technology in digital diagnostic display systems, a Quadro card
driving a 10 mega-pixel, 10-bit grayscale display. Figure 2shows a 10-bit enabled
mammography application displaying multiple modalities on multiple displays.

Figure 1. 10 MPixel, 10-Bit Diagnostic Mammography Display1

Figure 2. Application Enhanced Using Multiple Displays2

1 Image courtesy of NDS Surgical Imaging, DOME Z10

2 Image courtesy of Threepalms, Inc.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 3

SYSTEM SPECIFICATION

 10 and 12-bit grayscale currently requires Windows XP 32-bit and 64-bit
 Windows Vista and Windows 7 supported on R270 or later driver releases
 Grayscale is only supported for OpenGL based applications

Supported Graphics Boards
10-bit grayscale is supported on Quadro graphics boards shown in Table 1. The graphics
boards are G80 and higher. The graphics boards are NVIDIA CUDA™ enabled.

Table 1. Quadro Graphics Boards with 10 and 12-Bit Grayscale Support

Mid range – Quadro 2000D, Quadro 2000, Quadro FX 1800

Recommended for basic 2D image
display and manipulation use cases.
No auxiliary power is required.

High end – Quadro 4000, Quadro FX 3800, Quadro FX 3700

Recommended if the primary usage
is to display and compute with 2D
grayscale images and additionally
3D data,

Ultra high end – Quadro 6000, Quadro 5000, Quadro FX 5800,
Quadro FX 4800, Quadro FX 5600, Quadro FX 4600

Recommended for applications that
also require rendering and
processing large 3D and 4D
geometries and volumes.

Quadro Plex 7000,

Quadro Plex 2200 D2

Dedicated deskside visual
computing system composed of 2
highest-end Quadro graphics boards
with up to 12 GB of total graphics
memory. Recommended for
advanced visualization and large
scale projection and display use
cases.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 4

Supported Monitors
The monitor should be capable of 10 and 12-bit outputs. We currently support the
following displays.

Table 2. Grayscale Capable Display Panels with Supported Resolution
and Pixel Depth

Manufacturer Panel Supported Resolutions Grayscale Depth

NDS Surgical
Imaging

Dome E2
• 1600 × 1200 at 60 Hz
• 1200 × 1600 at 60 Hz

10 and 12-bit

Dome E3
• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10 and 12 bit

Dome E5
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10 and 12-bit

Dome Z10

• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz
• 4096 × 2560 at 50 Hz
• 2560 × 4096 at 50 Hz

10 and 12-bit

Eizo GS 520
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10-bit

NEC

MD205MG,
MD205MG-1

• 2560 × 2048 at 57 Hz
• 2048 × 2560 at 57 Hz

10-bit

MD213MG
• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10-bit

MD21GS-3MP
• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10-bit

MD21GS-2MP
• 1600 × 1200 at 60 Hz
• 1200 × 1600 at 60 Hz

10-bit

Wide IF2105PM
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10-bit

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 5

Supported Connectors

Single or Dual-link DVI

Although single-link DVI is only capable of transmitting up to HD (1920 × 1200), our
grayscale pixel packing mechanism allows 5 MP (2560 × 2048) images to be sent over
single-link DVI.

DisplayPort
 For newer Quadro cards that support DisplayPort output, a DisplayPort-to-DVI

adapter is needed as current grayscale monitors only support DVI at this time.
 For DisplayPort-to-single-link DVI conversion, passive adapters such as Hosiden

(P/N TYX1602-010307) and Simula (P/N DJ8028B-1000-10E) are tested and
recommended.

 To support dual-link resolutions from a DisplayPort connector, an active adapter is
required. As shown in Figure 4 this dongle includes a built in USB cable connecting to
the USB port providing power to the adapter. NVIDIA recommends the Bizlink
DisplayPort-to-DVI-D dual-link cable adapter (P/N KS10014-207).

 The Simula and Bizlink adapters can be purchased from NVIDIA’s online at
http://store.nvidia.com/ (under the cables category).

Figure 3. DisplayPort to Single-Link DVI Adapter (Passive)

Figure 4. DisplayPort to Dual-Link DVI Adapter (Active)

http://store.nvidia.com/�

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 6

Grayscale Monitor Settings
When a grayscale compatible monitor is connected to a suitable NVIDIA Quadro
solution, the NVIDIA driver automatically detects it and immediately switches to
packed pixel mode. Therefore, there are no control panel settings to enable and disable
10-bit grayscale. The only setting required is to enable the grayscale monitor to display
at its optimal resolution as shown in the following steps for a 5 MP panel with resolution
2560 × 2048.

1. Open the Display Properties.

2. Select the Settings tab.

3. Click on Advanced.

4. Select the Monitor tab.

5. Uncheck the Hide modes that this monitor cannot display check box.

6. Click Apply. The maximum resolution is now set to 2560 × 2048.

Figure 5. Enable 5 MP Grayscale Monitor to Display Higher Resolution

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 7

GRAYSCALE IMPLEMENTATION

Driver Layer
On grayscale enabled Quadro solution, the driver implements a pixel packing
mechanism that is transparent to the desktop and to the application. The 24-bit RGB
desktop is first converted to 12-bit grayscale using the NTSC color conversion formula
and then two 12-bit gray values are packed into 1 RGB DVI pixel and finally shipped to
the monitor. This pixel packing allows displaying of 5 MP gray values just using a
single-link DVI (that is normally limited to HD resolution).

Figure 6. Driver Converts and Packs Desktop from 24-Bit Color to 12-
Bit Gray

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 8

Application Layer
The 10 and 12-bit grayscale image viewing application is responsible for outputing 24-
bit RGB pixels which the driver then converts to 12-bit grayscale values for scanout as
described in the previous section.

The application uses a shader that takes in the 12-bit grayscale value from the image and
translates it into a 24-bit RGB pixel using a lookup table. The lookup table is generated
to find the best RGB pixel with as little as possible differences between the RGB values
(preferred is R=G=B) for each grayscale value in the input image. In essence, this process
is the inverse of the driver conversion from RGB to grayscale. The end result is that the
grayscale image on the desktop looks like a grayscale image on a color monitor.

The integer texture extension, EXT_texture_integer [4] in Shader Model 4 is used to
store the incoming grayscale image as a 16-bit unsigned integer without converting to
floating point representation saving memory footprint by 2×.
glPixelStorei(GL_UNPACK_ALIGNMENT, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA16UI_EXT, width, height, 0, GL_ALPHA_INTEGER_EXT ,
GL_UNSIGNED_SHORT, TextureStorage);

The lookup table mapping the grayscale image to 24-bit RGB values is stored as 1D
texture. The lookup table dimensions should exactly match the bit depth of the grayscale
values expected in incoming image so that no filtering and interpolation operations will
be performed thus preserving image precision and fidelity. Changes to contrast,
brightness and window level of the image are easily done by changing the lookup table
resulting in a 1D texture download without any change to the source image.
#extension GL_EXT_gpu_shader4 : enable // for unsigned int support uniform usampler2D
texUnit0; // Gray Image is in tex unit 0
uniform sampler1D texUnit1; // Lookup Table Texture in tex unit 1
void main(void)
{

 vec2 TexCoord = vec2(gl_TexCoord[0]);
 //texture fetch of unsigned ints placed in alpha channel
 uvec4 GrayIndex = uvec4(texture2D(texUnit0, TexCoord));
 //low 12 bits taken only
 float GrayFloat = float(float(GrayIndex.a) / 4096.0);
 //fetch right grayscale value out of table
 vec4 Gray = vec4(texture1D(texUnit1, GrayFloat));
 // write data to the framebuffer
 gl_FragColor = Gray.rgba;

}

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 9

Figure 7. Application Level Texture Setup for 10 and 12-Bit Grayscale
Display

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 10

MULTI-DISPLAY CONFIGURATIONS

Diagnostic imaging commonly requires multiple displays for side by side modality
comparisons. Multi-display configurations are becoming more practical with systems
capable of supporting multiple graphics boards that in turn drive multiple displays. A
single Quadro board can drive a maximum of 2 displays. Depending on the available
PCI slots within a system, multiple cards can be used to drive several displays. These
multiple displays can be a mix of regular color LCD panels and specialty grayscale
monitors. This section explains the issues that arise from such a heterogeneous
configuration and programming pointers to address them. The full source code for the
examples is found in the accompanying Grayscale10-bit SDK.

Multi-GPU Compatibility
Grayscale capable Quadro boards can be mixed with other Quadro boards that can drive
one or many side displays as shown in Table 3. These “Side Display GPU’s” may not
yield the grayscale effect but the system will be compatible. Mixing of GPU’s is only
guaranteed to work if the GPU’s are of the same generation.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 11

Table 3. Multi-GPU Compatibility

 Grayscale GPU

Quadro 2000D
Quadro 2000
Quadro FX
1800

Quadro 5000
Quadro 4000
Quadro FX 4800
Quadro FX 3800
Quadro FX 4600
Quadro FX 3700

Quadro 6000
Quadro FX 5800
Quadro FX 5600

Quadro Plex 7000
Quadro Plex D2

Si
de

 D
is

pl
ay

 Q
ua

dr
o

G
PU

Quadro 600
Quadro NVS 450
Quadro NVS 420
Quadro NVS 300
Quadro NVS 295

Quadro 2000D
Quadro 2000
Quadro FX 1800

Quadro 5000
Quadro 4000
Quadro FX 4800
Quadro FX 3800
Quadro FX 4600
Quadro FX 3700

 X

Quadro 6000
Quadro FX 5800
Quadro FX 5600

 X

Note: These are theoretical compatibilities assuming the availability of 2 auxiliary power inputs. In
practice, the physical system attributes such as availability of PCI slots and their placements will
determine the final working set of cards from Table 3. The Quadro FX 5800 and Quadro FX 6000
require the full 2 auxiliary power inputs and therefore only used with lower-end Quadro cards that
do not have any auxiliary power requirements.
The mixing of older pre-G80 cards is not supported in grayscale configurations.

Multiple Display Setup
To enable multi-display from the desktop follow these simple steps.

1. Open the Display Properties.

2. Select the Settings tab.

3. Check the Extend my Windows desktop onto this monitor checkbox for each display as
shown in Figure 8.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 12

Figure 8. Display Properties Before and After Displays are Enabled

For an application using multiple GPU’s and displays it is often useful to
programmatically find out their attributes and capabilities. This section and the
following ones show code samples to demonstrate that in progressive detail. Following
are some data structures used throughout the document examples. The CDisplayWin
structure defined in CDisplayWin.[h|cpp]encapsulates the attributes of each display
and the displayWinList is a container for all displays. Accessing functions have been
omitted to aid readability.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 13

class CDisplayWin {
 HWND hWin; // handle to display window
 HDC winDC; // DC of display window
 RECT rect; // rectangle limits of display
 bool primary; //Is this the primary display
 char displayName[128]; //name of this display
 char gpuName[128]; //name of associated GPU
 bool grayScale; //Is this a grayscale display
public:
 bool spans(RECT r);//If incoming rect r spans this display

}
#define MAX_NUM_GPUS 4
int displayCount = 0; //number of active displays
//list of displays, each gpu can attach to max 2 displays
CDisplayWin displayWinList[MAX_NUM_GPUS*2];

Following is a simple example using the Windows GDI to enumerate the attached
displays, gets their extents and also check if the display is set as primary. The following
code can be easily modified to include unattached displays.
DISPLAY_DEVICE dispDevice;
DWORD displayCount = 0;
memset((void *)&dispDevice, 0, sizeof(DISPLAY_DEVICE));
dispDevice.cb = sizeof(DISPLAY_DEVICE);
// loop through the displays and print out state
while (EnumDisplayDevices(NULL,displayCount,&dispDevice,0)) {
if (dispDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
 printf("DeviceName = %s\n", dispDevice.DeviceName);
 printf("DeviceString = %s\n",dispDevice.DeviceString);
 if (dispDevice.StateFlags &DISPLAY_DEVICE_PRIMARY_DEVICE)
 printf("\tPRIMARY DISPLAY\n");
 DEVMODE devMode;
 memset((void *)&devMode, 0, sizeof(devMode));
 devMode.dmSize = sizeof(devMode);
 EnumDisplaySettings(dispDevice.DeviceName, ENUM_CURRENT_SETTINGS,
 &devMode);
 printf("\tPosition/Size = (%d, %d), %dx%d\n", devMode.dmPosition.x,
 devMode.dmPosition.y,devMode.dmPelsWidth, devMode.dmPelsHeight);
 HWND hWin = createWindow(GetModuleHandle(NULL),devMode.dmPosition.x+50,
 devMode.dmPosition.y+50, devMode.dmPelsWidth-50, devMode.dmPelsHeight-
50);
 if (hWin) { //got a window
 HDC winDC = GetDC(hWin);
 // TODO - set pixel format, create OpenGL context
 }
 else
 printf("Error creating window \n");
 }//if attached to desktop
 displayCount++;
} //while(enumdisplay);

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 14

Running this enumeration code on our 3 display example (shown in Figure 8) prints out
the following.
DeviceName = \\.\DISPLAY1
DeviceString = NVIDIA Quadro FX 1800
PRIMARY DISPLAY
Position/Size = (0, 0), 1280x1024

DeviceName = \\.\DISPLAY2
DeviceString = NVIDIA Quadro FX 4800
Position/Size = (1280, 0), 2560x2048

DeviceName = \\.\DISPLAY3
DeviceString = NVIDIA Quadro FX 4800
Position/Size = (3840, 0), 1600x1200

Note: The enumeration shown in this section abstracts special hardware
capabilities of the displays such as grayscale or color capability. For such physical
display details, we need to access to the Extended display identification data
(EDID) the data structure provided by the computer display to the graphics card.
This is described in the next section.

Mixing Grayscale and Color Displays
The previous section demonstrated how to get the general characteristics of a display
such as extent etc, but more specific properties of monitors will decide how to layout our
application. For example, user interface and launching elements are normally placed on
the regular color LCD’s while the radiological images will be rendered to the grayscale
displays. A display is defined to be grayscale compatible if both the monitor and the
GPU attached are grayscale enabled. To determine if a monitor is grayscale we parse its
EDID to get the model name and compare it with the list of enabled monitors. This
EDID is provided by the NVIDIA NVAPI [5] – an SDK that gives low level direct access
to NVIDIA GPUs and drivers on all windows platforms. The following example shows
enumerating the attached displays and its associated panel and GPU string. Refer to the
complete source in CheckGrayscale.cpp for error checking functions and the
isGrayscaleGPU and isGrayscaleMonitor string parsing functions.

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 15

// Declare array of displays and associated grayscale flag
NvDisplayHandle hDisplay[NVAPI_MAX_DISPLAYS] = {0};
NvU32 displayCount = 0;
// Enumerate all the display handles
for(int i=0,nvapiStatus=NVAPI_OK; nvapiStatus == NVAPI_OK; i++) {
nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay[i]);
if (nvapiStatus == NVAPI_OK) displayCount++;
}
printf("No of displays = %u\n",displayCount);

//Loop through each display to check if its grayscale compatible
for(unsigned int i=0; i<displayCount; i++) {
//Get the GPU that drives this display
NvPhysicalGpuHandle hGPU[NVAPI_MAX_PHYSICAL_GPUS] = {0};
NvU32 gpuCount = 0;
nvapiStatus =
NvAPI_GetPhysicalGPUsFromDisplay(hDisplay[i],hGPU,&gpuCount);
nvapiCheckError(nvapiStatus);

//Get the GPU's name as a string
NvAPI_ShortString gpuName;
NvAPI_GPU_GetFullName (hGPU[0], gpuName);
printf("Display %d, GPU %s",i,gpuName);
nvapiCheckError(nvapiStatus);

//Get the display ID for subsequent EDID call
NvU32 id;
nvapiStatus = NvAPI_GetAssociatedDisplayOutputId(hDisplay[i],&id);
nvapiCheckError(nvapiStatus);

//Get the EDID for this display
NV_EDID curDisplayEdid = {0};
curDisplayEdid.version = NV_EDID_VER;
nvapiStatus = NvAPI_GPU_GetEDID(hGPU[0],id,&curDisplayEdid);
nvapiCheckError(nvapiStatus);

//Check if the GPU & monitor both support grayscale
//and set the grayFlags table
if (isGrayscaleGPU(gpuName)&& \\
 isGrayscaleMonitor(curDisplayEdid.EDID_Data,NV_EDID_DATA_SIZE))
 displayWinList[i].grayScale = true;
else
 displayWinList[i].grayScale = false;
}

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 16

Directed GPU Rendering
In a multi-GPU setup, the default behavior is for OpenGL commands to be sent to all
GPUs. While this works for many applications, performance is gated by the capabilities
of the lowest-end card. In a typical grayscale setup, the side display with GUI elements
is normally connected to a lower-end Quadro while the grayscale panels are connected
to a higher-end Quadro card. It is desirable to limit grayscale rendering to the GPUs that
are driving the grayscale panels and not involve the side GPU at all in the render
process. Previous approaches required programmatically selecting the GPU using
OpenGL extensions which can quickly become an additional programming burden for a
radiology developer. The newer Quadro drivers have a feature called “Directed
Rendering” that allows the user to target the GPU for rendering and decouple it from
the display GPU. This is done via the NVIDIA Control Panel as shown in Figure 9 or
programmatically using NVAPI (see accompanying SDK). When the render GPU and
the display GPU are different, the driver transparently uses a fast transfer path on
Quadro cards to split the rendered images onscreen. By default, the driver will pick the
biggest GPU for render.

Figure 9. Setting Render GPU from NVIDIA Control Panel

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 17

TYPICAL MULTI-DISPLAY CONFIGURATIONS

We examine the commonly used multi-display setups that mix grayscale monitors and
color panels and their underlying GPU configuration.

Case 1. Two 5 MP Grayscale Displays Driven by One GPU
The most commonly used configuration for diagnostic imaging, a high-end Quadro
GPU drives 2 5 MP grayscale displays. One or two side displays are driven by a low-end
NVS™ card (if there are no PCI Express ×16 slots available) or another Quadro card.

Figure 10. 10 MP Grayscale Display Configuration

Table 4. Characteristics for 10 MP Setup

Total Resolution 10 MP 5120 × 2048 (landscape) or 4096 × 2560 (portrait)

Side Display
(Primary)

Quadro NVS 300
Quadro NVS 295
Quadro NVS 420

PCIe ×1 option; good for systems with only 1
avalable PCIe ×16 slot that is used for the
grayscale GPU

Quadro NVS 450
Mid, high-end
GPUs

Occupies 1 PCIe ×16 slot; recommended for
systems with at least 2 PCIe ×16 slots

Quadro FX 4600
Quadro FX 4800

Physically spans 2 PCIe slots; recommended for
systems with at least 2 PCIe ×16 slots

Grayscale Display Grayscale GPUs
(Table 3)

Requires 1 or 2 PCIe slots depending on the GPU

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 18

Case 2. Four 5 MP Grayscale Displays Driven by Two
GPUs
Two grayscale capable Quadro GPUs drive four 5 MP grayscale displays. One or two
side displays are driven by a low-end Quadro NVS card or a mid to high-end Quadro
FX card depending on the available PCI Express ×16 slots in the system.

Figure 11. Three GPUs Driving a 20 MP Grayscale Display

Table 5. Characteristics for the 20 MP Setup

Total Resolution 20 MP
10, 240 × 2048 (landscape) or 8192 × 2560
(portrait)

Side Display
(Primary)

• Quadro NVS 300
• Quadro NVS 295
• Quadro NVS 420
• Mid high-end
grayscale GPU

• 1 PCI Express ×1 slot
• 1 PCI Express ×16 slot

Quadro NVS 450
Mid, high-end
GPUs

Occupies 1 PCIe ×16 slot; recommended for
systems with at least 2 PCIe ×16 slots

Grayscale Display
GPU 1

Grayscale GPUs
(Table 3)

1 PCI Express ×16 slot. May occupy 2 PCIe slots

Grayscale Display
GPU 2

Grayscale GPUs
(Table 3)

1 PCI Express ×16 slot. May occupy 2 PCIe slots

10 and 12-Bit Grayscale Technology

10 and 12-Bit Grayscale Technology TB-04631-001_v03 | 19

REFERENCES

[1] Digital Imaging and Communications in Medicine (DICOM)- Part 14 grayscale
standard display function. http://medical.nema.org

[2] NDS Dome E5 Display
http://www.ndssi.com/products/dome/ex-grayscale/e5.html

[3] Eizo Radiforce GS520 Display
http://www.radiforce.com/en/products/mono-gs520-dm.html

[4] Integer Texture Extension
http://www.opengl.org/registry/specs/EXT/texture_integer.txt

[5] NVIDIA NVAPI – www.nvapi.com

[6] Ian Williams, HD is now 8MP &HDR, Slides from NVISION 2008.
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visuali
zation/NVISION08-8MP_HDR.pdf

IMPLEMENTATION DETAILS

The accompanying source code is divided into 3 separate projects. The intent is for these
components to be mixed and matched according to the user application requirements.

 GrayscaleDemo.sln
● GrayscaleDemo.[cpp|h] – An example demo application that does the various

texture setups and allows the user to choose a grayscale image for display.
 CheckGrayscale.sln

● CDisplayWin.[cpp|h] – Class CDisplayWin that encapsulates all attributes of an
attached display such name, extents, driving GPU, etc.

● CheckGrayscale.cpp – Main program that enumerates all attached GPUs and
displays using Win GDI API and uses NVIDIA NVAPI to check the displays that
are grayscale compatible.

 DirectedRendering.sln
● DirectedRendering.cpp – Main program that shows targeting a specific GPU for

rendering using NVAPI.

http://medical.nema.org/�
http://www.ndssi.com/products/dome/ex-grayscale/e5.html�
http://www.radiforce.com/en/products/mono-gs520-dm.html�
http://www.opengl.org/registry/specs/EXT/texture_integer.txt�
http://www.nvapi.com/�
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visualization/NVISION08-8MP_HDR.pdf�
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visualization/NVISION08-8MP_HDR.pdf�

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

ROVI Compliance Statement
NVIDIA Products that support Rovi Corporation’s Revision 7.1.L1 Anti-Copy Process (ACP) encoding technology
can only be sold or distributed to buyers with a valid and existing authorization from ROVI to purchase and
incorporate the device into buyer’s products.

This device is protected by U.S. patent numbers 6,516,132; 5,583,936; 6,836,549; 7,050,698; and 7,492,896
and other intellectual property rights. The use of ROVI Corporation's copy protection technology in the
device must be authorized by ROVI Corporation and is intended for home and other limited pay-per-view uses
only, unless otherwise authorized in writing by ROVI Corporation. Reverse engineering or disassembly is
prohibited.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, NVS, and Quadro are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
© 2009, 2010, 2011 NVIDIA Corporation. All rights reserved.

	10 and 12-Bit Grayscale Technology
	Introduction
	System Specification
	Supported Graphics Boards
	Supported Monitors
	Supported Connectors
	Single or Dual-link DVI
	DisplayPort

	Grayscale Monitor Settings

	Grayscale Implementation
	Driver Layer
	Application Layer

	Multi-Display Configurations
	Multi-GPU Compatibility
	Multiple Display Setup
	Mixing Grayscale and Color Displays
	Directed GPU Rendering

	Typical Multi-Display Configurations
	Case 1. Two 5 MP Grayscale Displays Driven by One GPU
	Case 2. Four 5 MP Grayscale Displays Driven by Two GPUs

	References
	Implementation Details

