

S5142 - SEE THE BIG PICTURE: SCALABLE VISUALIZATION SOLUTIONS FOR HIGH RESOLUTION DISPLAYS

DOUG TRAILL, SENIOR SOLUTIONS ARCHITECT, NVIDIA QUADROSVS@NVIDIA.COM

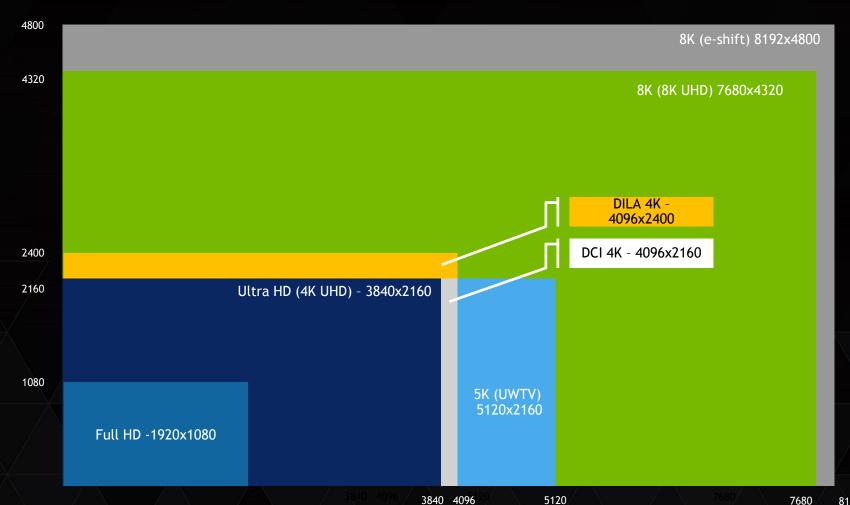
Scaling Detail

Realism requires resolution - scale any application across up to 16 displays from just one system using 4 independent display outputs of Quadro M6000 and Quadro Sync

Scale even further with a visualization cluster of systems built upon Quadro Sync

20MPixel - 16 Projector

10MPixel - 8 Projector


4MPixel - 1 Projector

- 16 HD projector, 20MPixel, wall display
- One system with 4 Quadro K5200's & Quadro Sync

FROM HD TO 4K & BEYOND

INCREASING DISPLAY RESOLUTIONS

4K UHD - 4 times HD res 8K UHD - 16 times HD res

Professional 4K projectors 4096x2160 4096x2400

8k Projectors JVC - 8192x4800 (e-shift) (4 * 4K)

8192

SCALE FROM 4K UP....

Image courtesy of Prysm Inc

Image courtesy of Visbox

Image Courtesy of Elbit Systems

MOSAIC

Single workstation
Single Desktop
Up to 4 GPUs - 16 display heads
Application independent

GPU Affinity

Single workstation
Multiple - desktops/GRIDs
Up to 8 GPUs - 32 display heads
Application dependent

Cluster solution

Multiple workstations
Multiple - desktops/GRIDs
Up to ~200 GPUs - 800 display heads
Application dependent

~142 Mpixels (16 * 4K) ~284 Mpixels (32*4k)

~7,078 Mpixels (800x4K)

PROJECT ON TO ANY SURFACE...

Image Courtesy of IMMERSIVE DESIGN STUDIOS

S5642 - Canvas: GPU Image Processing on Giant Surface - Thomas Soetens - Wed 3/18

WARP + INTENSITY API (WINDOWS + LINUX)

Image courtesy of Joachim Tesch
- Max Planck Institute for Biological Cybernetics

Image courtesy of Christie Digital

Projection Blending & Mapping software available from:

S5143 - Architectural Display Walls Using NVAPI - 5.00 pm today

QUADRO M6000 World's Most Powerful Pro Graphics Card

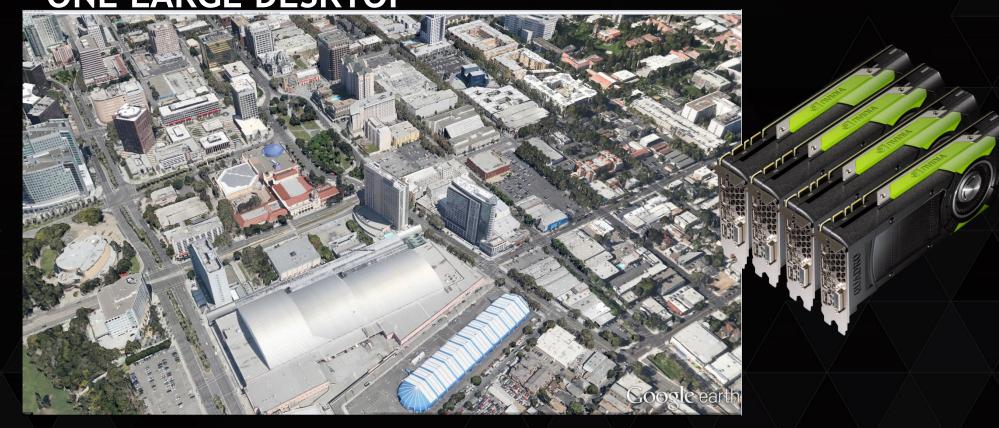
- Worlds most powerful Graphics Solution
- Beyond 4K support
 - Drive single 8K or multiple 4K/5K displays
 - Flight Simulation, Video Walls
- Enable 4K @ 60 Hz video decode and encode including HEVC (H.265)
- Designed to tackle most challenging workflows
 - Turbocharged Persona 250W with maximum performance

QUADRO DRIVER FEATURES

Custom Resolutions	MOSAIC	Tiled Displays	10/12 bit Color
GTF, DMT, CVT, CVT-RB, Manual timing	Seamless Desktop across multiple GPUs	Automatic MOSAIC setup on tile displays using Display ID	Support High Dynamic Range Displays
EDID Management	MOSAIC + Sync	Ultra high resolution Desktop	3D Stereo
Capture and Read EDID from file	Framelock, Overlap support, 3D stereo	Up to 16k by 16k	OpenGL/DirectX, active, passive, pixel packed
4K resolution	GPU Direct 4 Video	External or Internal	Display Port MST
DP1.2 per connector or HDMI1.4b	Picture-in-Picture support	Sync Genlock/TTL Sync. Internal Sync	Support multi-streaming devices
Warp + Intensity API	NVAPI	Display Clone Modes	GPU Affinity
Edge-blending, projection mapping. Windows + Linux	Programmatically control driver	Display Port Clone, Pan & Scan clone, 4K cloning	Multi-GPU support and Swap Groups
8K e-shift support	MOSAIC CONFIDENCE MONITOR	NVWMI	
Native support for 8k e-shift	Smart clone features	Scripting/Event monitor/remote setup	

MOSAIC - WHY IS IT NEEDED? - WINDOWS ON ITS OWN - INDEPENDENT DESKTOPS

WINDOWS ON ITS OWN


- INDEPENDENT DESKTOPS

WITH MOSAIC

ONE LARGE DESKTOP

Max Number displays

		1 GPU	2 GPUs	3 GPUs	4 GPUS
Ultra - hi resolution	QUADRO M6000 New	Overlap + bezel correction	8 Overlap + bezel correction SLI (2) or Quadro Sync	12 Overlap + bezel correction Quadro Sync	16 Overlap + bezel correction Quadro Sync
BEST	QUADRO K5200	4 Overlap + bezel correction	8 Overlap + bezel correction SLI (2) or Quadro Sync	12 Overlap + bezel correction Quadro Sync	16 Overlap + bezel correction Quadro Sync
BETTER	QUADRO K4200 (3)	Overlap + bezel correction	6 Overlap + bezel correction SLI (2) or Quadro Sync	9 Overlap + bezel correction Quadro Sync	12 Overlap + bezel correction Quadro Sync
GOOD	QUADRO K1200 New NVS510	Overlap New (1) bezel correction	8 bezel correction	12 bezel correction	16 bezel correction

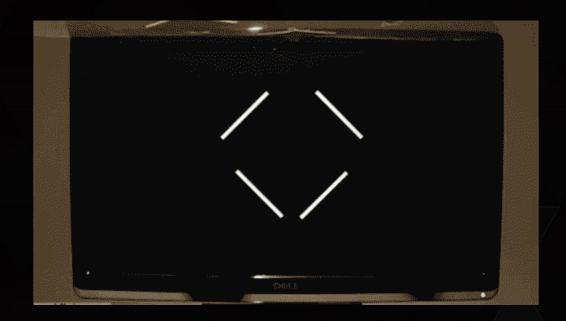
⁽¹⁾ Overlap support on single GPU - NVS510, K1200, K2200 - Supported in new driver release - coming very soon.

Multi-GPU Overlap requires SLI or Quadro Sync card.

MOSAIC is supported on Windows 7, 8.1, 10 + Linux

⁽²⁾ SLI must be certified platform - http://www.nvidia.com/object/quadro_sli_compatible_systems.html

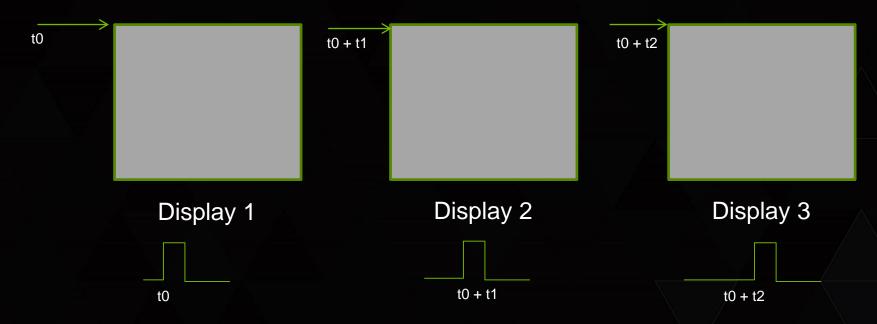
⁽³⁾ K4200 can support 4 display heads per card using DP MST hub



Quadro Sync

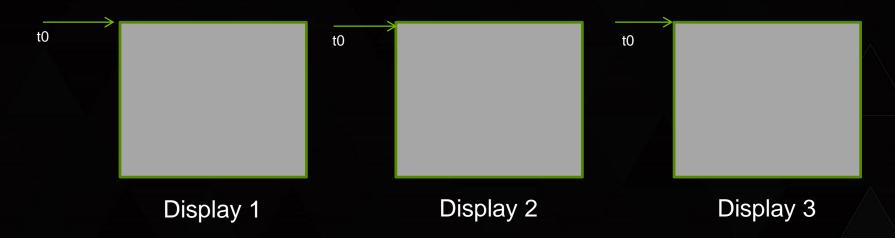
Focus on the image and not the artifacts

WHY IS SYNC IS IMPORTANT?

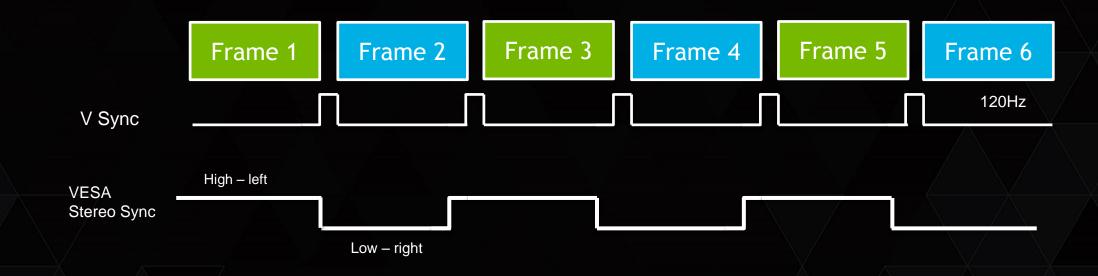


Bezel's hide sync issues !!!

Image from gizmodo.com


VERTICAL SYNC

- Vertical Sync is the pulse that indicates the start of the display refresh.
- To avoid tearing on a single screen the application swap buffers are synced to vertical sync.
- Although all three displays may have the same refresh rate vertical sync start may be different.
- This can result in tearing between displays.


FRAMELOCK/GENLOCK

- Framelock/Genlock provides a common sync signal between graphics cards to insure the vertical sync pulse starts at a common start.
- This is commonly referred to as Frame Synchronization
- Framelock Synchronization is generated from a master node. All other nodes would be sync to this.
- Genlock synchronization is from an external sync generator (house sync). Each node attached to the genlock signal is synced from that signal.
- Framelock & Genlock can be mixed in the cluster. With the master node being synchronized from the genlock pulse

STEREO LOCK

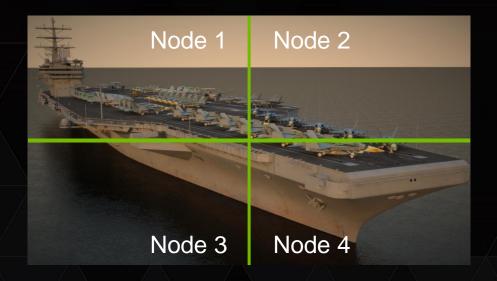
No information that tells a display or stereo glasses which eye is left or right

SWAPBUFFERS

SWAPBUFFERS

SWAPBUFFERS IN A CLUSTER

Each node is now rendering a scene with different complexity i.e from least to highest we get:


- 1. $node 3 \sim 16ms = 60fps$
- 2. node $4 \sim 36ms = 30fps$
- 3. $node 2 \sim 53ms = 15fps$
- 4. node 1 ~ 99ms = 10fps

- With each node running at a different rate the user would perceive tearing on the screen.
- We need a mechanism to ensure that each node will swap at the same time.

SWAP GROUP AND SWAP BARRIER

- NVIDIA Extensions to OpenGL / DirectX (via NVAPI)
 - Swap Group provides synchronization multiple GPUs in a single host
 - Swap Barrier provides synchronization of GPUs across multiple nodes.
 - Use RJ45 (framelock) connection on Quadro Sync so faster than sync over a network

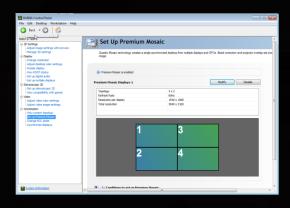
With Swap Barrier each node will wait until all nodes have completed their render

1. node 3 \sim 16ms = 10fps

2. node $4 \sim 36 \text{ms} = 10 \text{fps}$

3. node 2 \sim 53ms = 10fps

4. node 1 ~ 99ms = 10fps



MOSAIC

Setup and configuration

SETTING UP MOSAIC

Control Panel

Configuremosaic

Large display walls

NVWMI

Setup from a remote machine Powershell scripts Program directly **NVAPI**

Incorporate MOSAIC setup into your own application

Driver Install

Download from NVIDIA driver section

Install with Driver under advanced options Registered
Developer for NDA
access NVAPI

MOSAIC GRIDS

columns

rows

1	2	3
4	5	6
7	8	9

Rows x columns <= 16 Max Horizontal or vertical Pixels <= 16384

Vertical Pixels

Enumeration of the Grid always starts top left and goes left to right

Horizontal pixels

UNDERSTANDING TOPOLOGIES

Column overlap or bezel correction

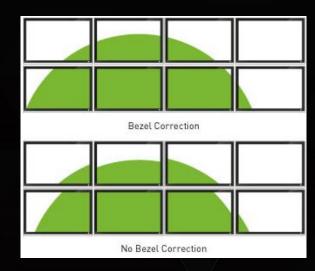
Row Overlap or Bezel correction

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Bezel correction will increase overall pixel size

i.e each display is 1920x1080 Bezel per column is 100

Total horizontal width = 1920*4 + 100*3 = 7980

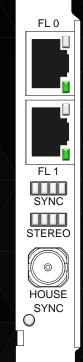

Overlap correction will decrease overall pixel size

BEZEL AND OVERLAP CORRECTION

Bezel Correction

Will make the image look continuous as we render under the bezel

Overlap Correction


For projectors it maintains the aspect ratio of the display.

ANATOMY OF A SYSTEM

stereo sync bracket

Quadro Sync card

REAR PANEL - BOXX 8950 - 4 K6000S

VESA Stereo Bracket

GPU 0

GPU 1

GPU 3

GPU 2

Quadro Sync

VESA stereo - only one per system required Doesn't require PCIe slot - just a blank

Slot 2

K6000 - Master GPU will have a green LED after POST

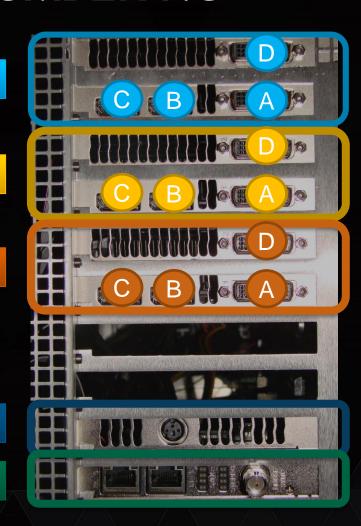
Slot 4

Slot 6

Slot 8

Connect to all 4 GPUs.
At boot-up LEDs will be amber showing GPU connected

PORT NUMBERING


GPU 0

GPU 1

GPU 2

VESA Stereo Bracket

Quadro Sync

Ports auto enumerate depending what is attached –

i.e. A + D are attached

A = 0,0

D = 0,1

A + B + D are attached

A = 1.0

B = 1,1

D = 1,2

A + B + C + D are attached

A = 2,0

B = 2,1

C = 2,2

D = 2,3

PORT NUMBERING - QUADRO M6000

GPU 0

GPU 1

Ports auto enumerate depending what is attached –

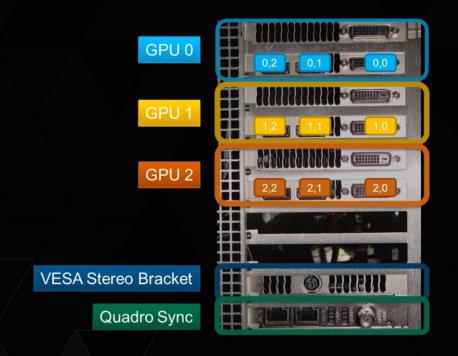
i.e. A + 1 are attached

A = 0.0

1 = 0,1

1, 2, 3, & 4 attached

1 = 1,0

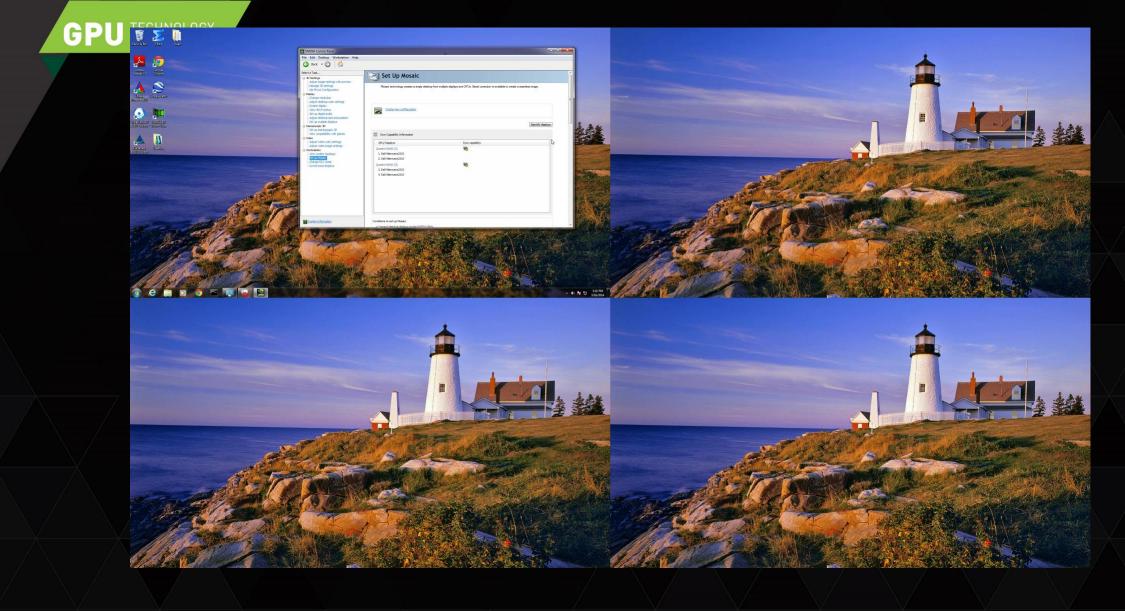

2 = 1,1

3 = 1,2

4 = 1,3

RELATING PORTS TO GRID

configureMosaic.exe set rows=3 cols=3 configureMosaic.exe set rows=3 cols=3 out=0,0 out=0,1 out=0,2 out=1,0 out=1,1 out=1,2 out=2,0 out=2,1 out=2,2

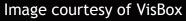


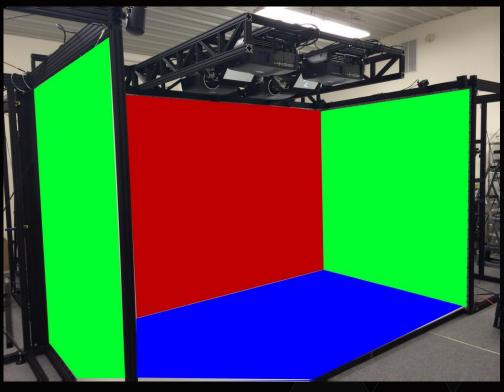

9

PORTRAIT MODE

- Some operations are best done by Command line
 - i.e. Portrait mode requires that GUI starts in Landscape mode it's a feature ;-)

Rotate values


90 180 270


configureMosaic set rows=1 cols=3 rotate=90

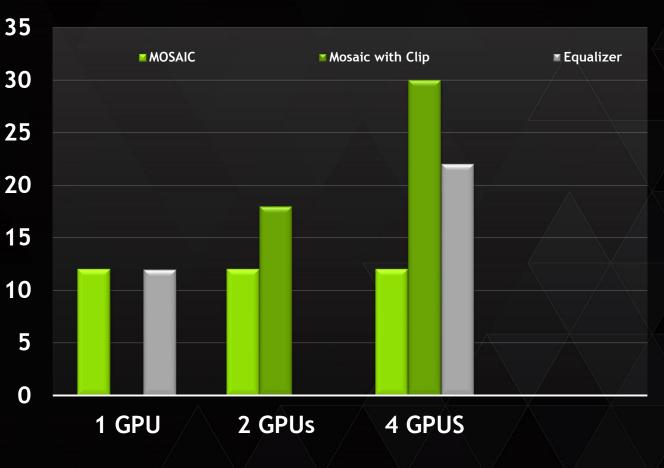
MOSAIC GRIDS

- 12 Projectors, driven by 3 K5000s
- Floor and Front wall 4 projectors
- Side walls are 2 projectors
- 4th GPU used a console output
- After configuring MOSAIC set Sync.
- Dual boot works with Linux.

configureMosaic.exe set rows=1 cols=1 out=0,0 nextgrid rows=2 cols=2 overlap=384,240 out=1,0 out=1,1 out=1,2 out=1,3 nextgrid rows=2 cols=2 overlap=0,240 out=3,0 out=3,1 out=3,3 out=3,2 nextgrid rows=2 cols=2 overlap=384,480 out=2,0 out=2,1 out=2,2 out=2,3

MOSAIC VERSUS EQUALIZER

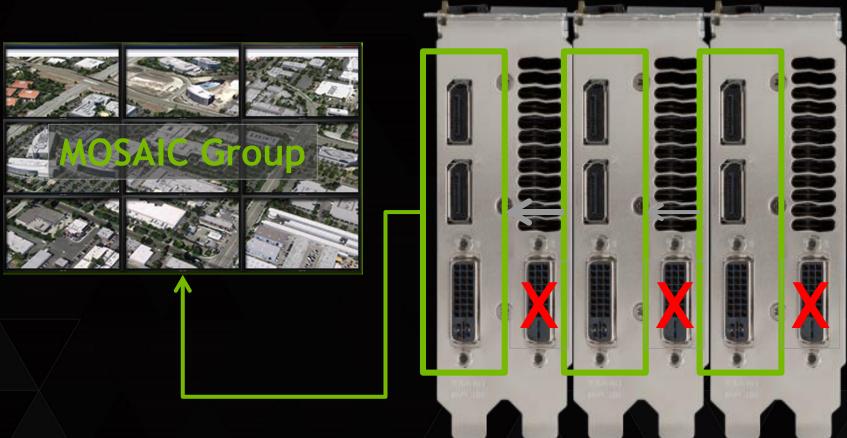
MOSAIC with Clip


- Improves fill performance

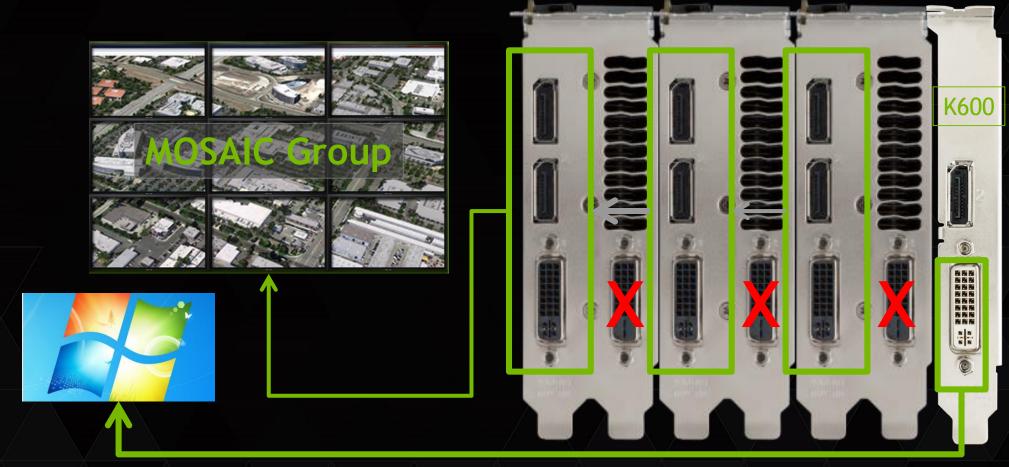
Flat Wall

- 4 1920x1200 monitors
- 2x2 MOSAIC layout

Equalizer


- Open source
- API intercept to convert applications to run on multi-GPUS

Quadro K6000s - driving 3840x2400 display



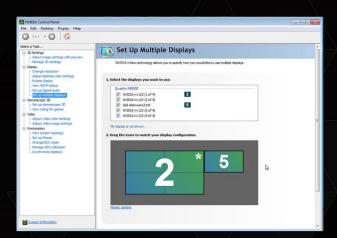
MOSAIC ACROSS MULTIPLE GPUS + 1

MOSAIC ACROSS MULTIPLE GPUS + 1

MOSAIC CONFIDENCE MONITOR R352

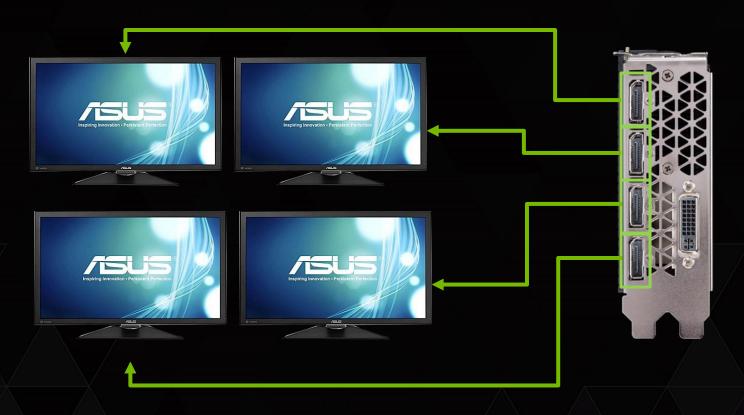
Aimed at 4K projectors with dual inputs.

- Scale
- Area or interest
- Pan + Scan mode



- All displays on single GPU.
- Clone to a single monitor.

MOSAIC +1 ON QUADRO M6000

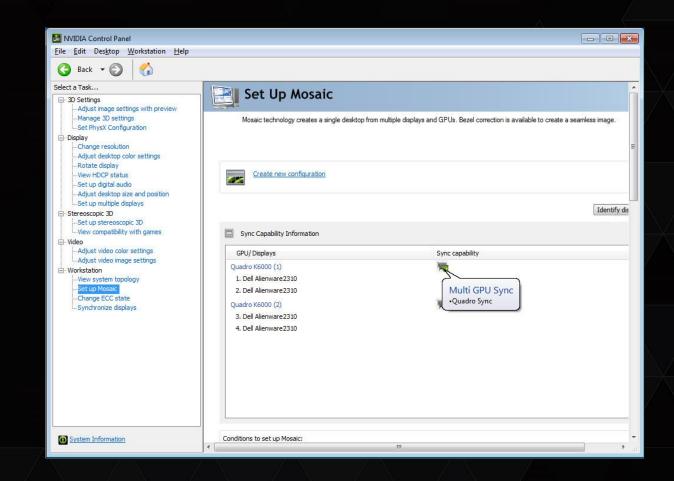


5 active displays on single M6000 MUST be 4 native DP connections Working in the lab - coming soon.....

M6000 - 4 X "4K"@60HZ

Supports 4 "4K" DP monitors - both MST + SST monitors are supported Support 2 "5K" monitors.

SVS FEATURES


Premium MOSAIC= MOSAIC with Sync

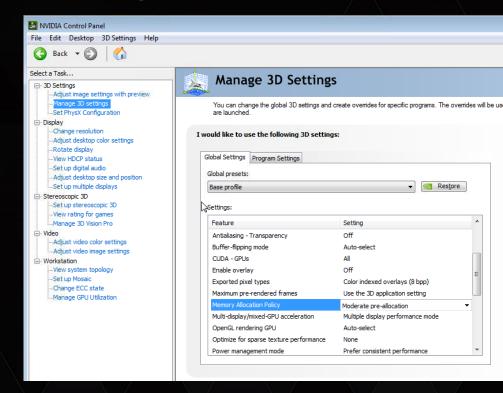
Sync Capability Information

Indicates whether or not card or system can be sync'd.

R331 driver and above

- GPU and port number OSD

NEW SVS FEATURES - R346

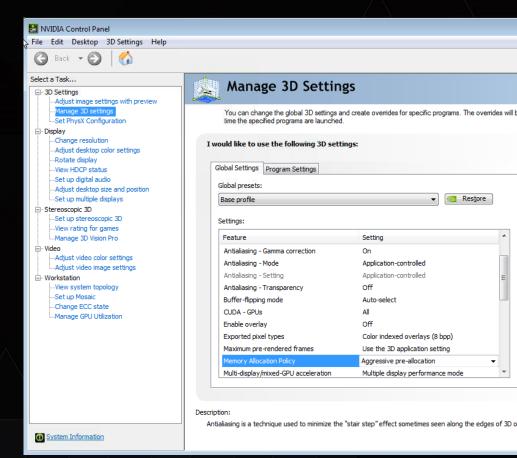

Force Stereo Shuttering

- Memory Allocation Policy
 - Moderate Pre-allocation
- Set Stereo to enable

VESA stereo (3-pin) port will now be active - even if no stereo app is running.

Notes:

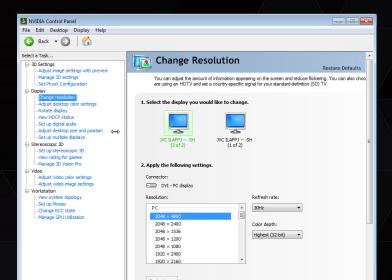
- 1) AERO desktop will always be disabled
- 2) 3D Vision Pro hub will be always enabled.



NEW SVS FEATURES - R346

Mode set Reduction

- "mode-sets" (SCREEN FLASH) reduction during setup for:
 - "Swap Groups"
 - * "tear free" mode i.e. Video Edit Profile
- Memory Allocation Policy
 - Aggressive Pre-allocation
- Note:
 - force stereo will also be enabled
 - AERO is disabled
 - Doesn't affect MOSAIC setup ie. Still screen flash



JVC 8K E-SHIFT PROJECTOR SUPPORT

- NVIDIA drivers detects projector via EDID
- Exposes a 2400x4800 display timing per input (projector has 4 inputs).
- ▶ We scan out alternate 1200x2400 odd/even frames
- ▶ VESA stereo (3pin) port is used to identify odd/even frame.

TILED DISPLAYS - AUTO MOSIAC

• Each Tile (Display)

- Unique EDID
- VESA Display ID extension provides position information
- NVIDIA driver automatically enables MOSAIC

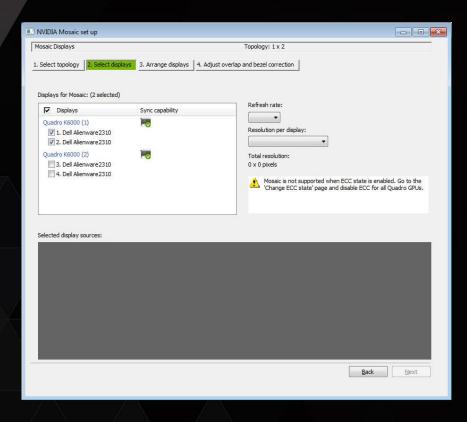
Example Displays

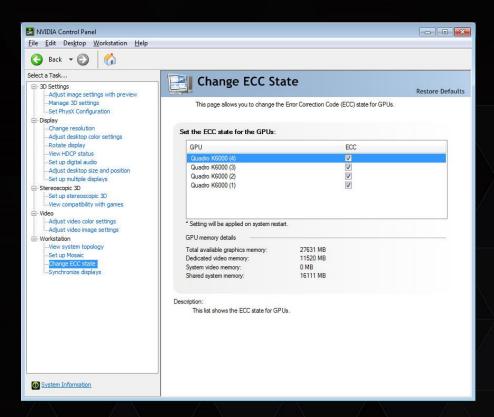
- 4K MST Monitors
- 5K MST Monitors
- 4K "research" projector

COMMON MOSAIC SETUP ISSUES

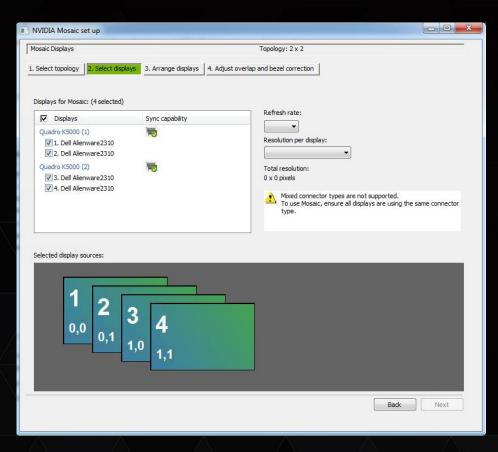
JOIN THE CONVERSATION

#GTC15 **y** f in





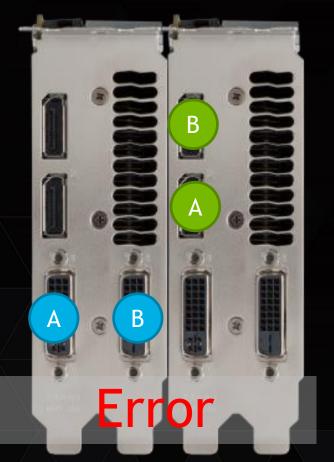
MOSAIC DOESN'T ENABLE ON MULTI-GPUS

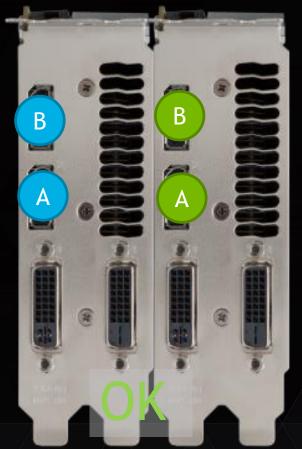


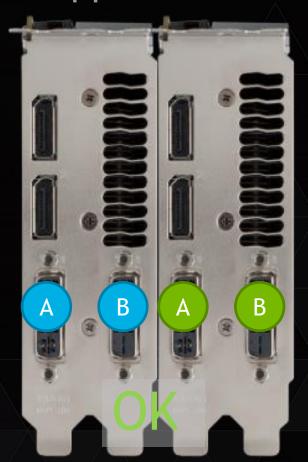
MOSAIC does not work with ECC on - Make sure it is off

MOSAIC ERROR - MIXED CONNECTORS

Error - "Mixed Connectors are not Supported"

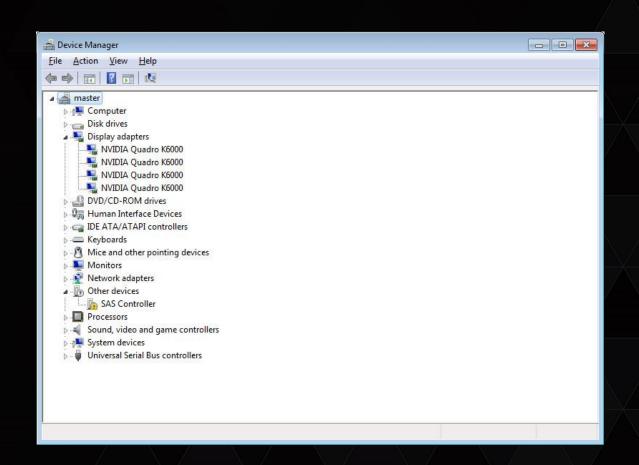



- Occurs if you have two DVI connectors on one GPU and use DP on the other.
- Complex rule
 - Basically need to use connectors of all one type first before using opposite
 - True even if you use dongles



MOSAIC ERROR - MIXED CONNECTORS

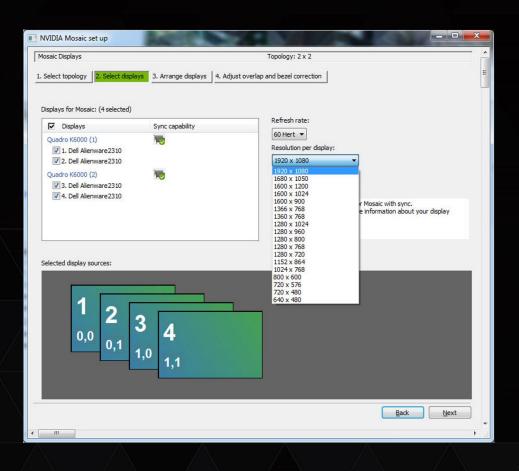
Error - "Mixed Connectors are not Supported"


MOSAIC TIPS

Make sure there is no Mirror Driver installed

Mirror Driver is installed by remote admin software. It will sit between the OS and graphics driver.

Will often break


- 3D stereo
- accelerated video playback
- MOSAIC + Sync
- Cause DWM to crash

MOSAIC DISPLAY RESOLUTION NOT LISTED

Resolution missing from MOSAIC setup menu

- Display Resolution is missing in drop down
- Three probably causes:
 - 1. Expected Resolution is not common across all displays
 - 2. The requested topology exceeds the 16K max width or height in pixels.
 - 3. Bug related to rotated displays where max resolution is OK but NVIDIA CPL calculates based on landscape display

No Common timings

1920x1080 @60 - just an identifier

⊟	Resolution, refresh rate		3840 × 2160 pixels, 60.000 Hz	
			Horizontal (2200)	Vertical (1125)
	Active		1920	1080
	Border		0	0
	Front porch		88	4
	Sync width		44	5
	Back porch		148	36
	Polarity		Positive (+)	Positive (+)

- 1. Displays have different EDIDs
- 2. Mixing EDID and Custom resolutions custom resolution may not match EDID.
- 3. Wrong cabling
 - DP to HDMI dongle blocks resolutions
 - Single link DVI cables versus dual link

No Common timings - Solutions

- Use System Topology
 - To check timing will catch most differences
- Use nvtimingdiag.exe
 - Prints detailed timing to helpidentify miss-matched displays
 - Contact QuadroSVS@nvidia.com for a copy.

- Use ManageEDID
 - Apply one good EDID to all sources
- Avoid mixing Custom Resolutions and EDIDs
 - Apply custom resolution to all displays.

Make sure max resolution does not exceed (16384)

Note Bezel/Correction will add to the total resolution

Portrait mode

- Bug with calculating total pixel width. Value is based on Landscape mode not Portrait.
- Can result in total resolutions that are within max spec being excluded

- Solution
 - Use configuremosaic command tool i.e.
 - Configuremosaic set rows =1 col=8 rotate=90

DISPLAY CONNECTORS

JOIN THE CONVERSATION

#GTC15 **У f** in

DRIVING ULTRA HIGH RES DISPLAYS

Connector	Version	Max pixel clock	Color depth	Max resolution for single cable
	1.3**	~	6bpc (YUV 4:2:0)	Up to 8k (UHD) @60Hz
Display Port	1.3**	~	12bpc	Up to 5K @ 60Hz
Display For t	1.2	~592 MHz	12bpc	Up to 4K @ 60Hz
	1.1a	~330 MHz	10bpc	Up to 4k @ 30Hz
	2.0*	~600 MHz	12bpc	Up to 4K @ 60Hz
HDMI	2.0	~330 MHz	6bpc (YUV 4:2:0)	Up to 4K @ 60Hz
	1.4b	~330 MHz	10bpc	Up to 4k @ 30Hz
	1.0 to 1.3			Does not support 4K
DVI	Dual Link	330 MHz	8bpc	Up to 4K @ 30Hz
	Single link	165 MHz		Does not support 4K

Resolution per cable is a function of the connection bandwidth and color depth.

Color - Windows Desktop 8bit, OpenGL Apps - 10/12bit, DirectX??

NOTE: Displays, extenders, switches may not implement full speed connections

^{*}High bandwidth HDMI2.0 supported on M6000 using DVI to HDMI adaptor ** DP1.3 support has not been announced

DISPLAY PORT

- Always use certified "Logo'd"Display Port equipment
 - Displays
 - Dongle
 - MST Hubs
 - Cables
 - Extenders

NVIDIA only tests equipment that is DP Certified

HDMI CABLES DONGLES

DVI to HDMI

- DVI to HDMI is pin compatible
- HDMI signaling over single-link DVI cables (3840x2160@60Hz)
- ► HDMI 2.0 / HDMI1.4b support

"good" quality cables

Adaptors tend to have more leakage - don't support high resolution

DP to HDMI

- DP (Type 2) to HDMI passive dongle
- HDMI 2.0 / HDMI1.4b support
- Marketed as supporting 4K HD, stereoscopic

HDMI 2.0 (4:2:0) support added in R340 - Kepler cards + above HDMI 2.0 (4:4:4) supported on Quadro M6000 (Note - probably only through DVI port - not sure the DP to HDMI dongles support it)

RGB COLOR

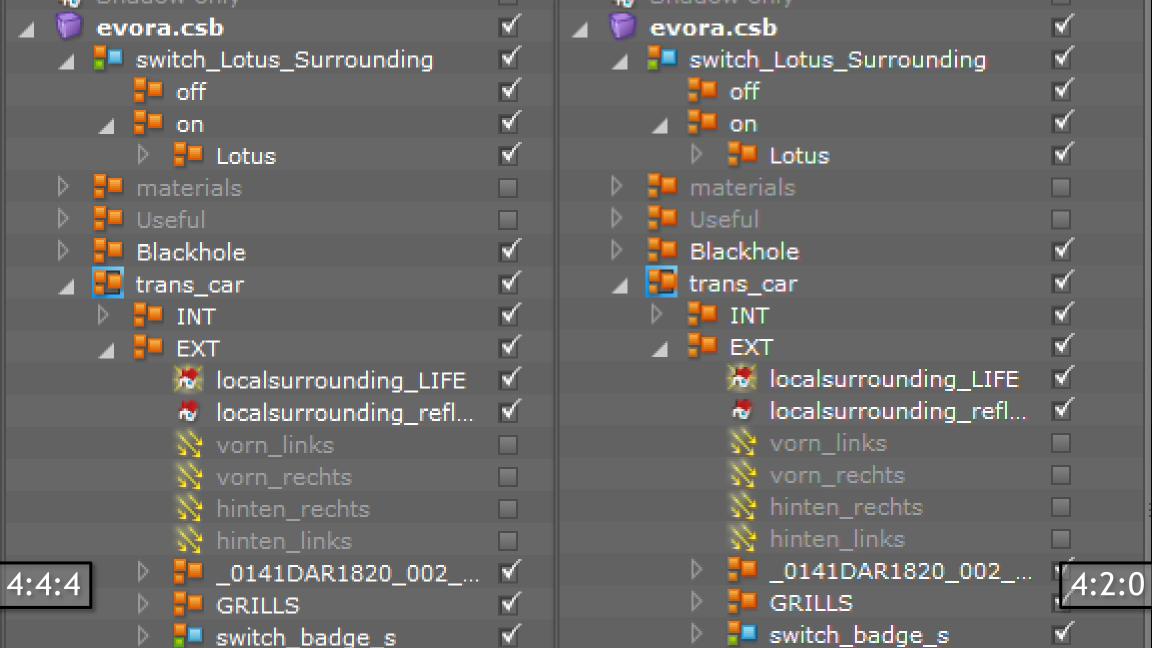
YCBCR - BRINGING COLOR TO A BLACK AND

WHITE TV

Y = Luminosity

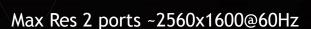
Cb = "Blue-ness"

Cr = "Red-ness"


1/2 THE DATA SIZE

WHAT'S THE IMPACT?

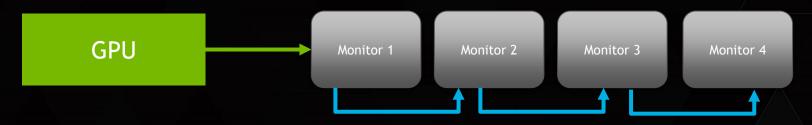
DISPLAY PORT + HDMI ARE SMART CONNECTIONS


- Link training at power-up
 - Sink Source devices.
 - Exchange details about capabilities
 - Will test the cable bandwidth
 - Maintains signal quality by lowering bandwidth.
- This means:
 - Short cables may support high resolution (bandwidth) signals.
 - Longer cables may block high resolution (bandwidth) signals)
 - When troubleshooting try to use as short as possible cables.

DISPLAY PORT MST HUBS

All hubs have the same bandwidth (HBR 2) - 5.4 Gbps

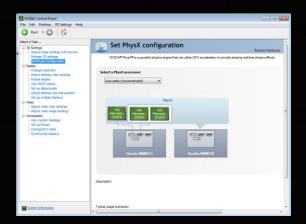
Max Res 3 ports ~ 2048x1536@60Hz

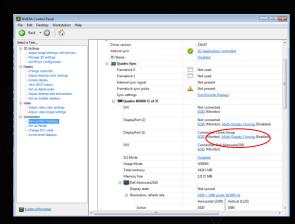

Max Res 4 port ~ 1920x1080@60Hz

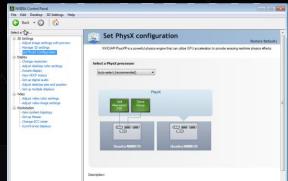
Max active displays per card = 4. MST Hubs do not let you exceed that MOSAIC + MST Hubs is supported. Use a DP certified hub.

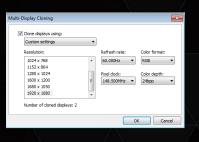
DP MULTI-STREAMING DISPLAYS

Daisy chain from one display to the next


Max bandwidth is 5.4 Gbps to share between monitors


- We currently do not "support" MOSAIC with daisy chaining.
- We support DP Clone mode & Extended desktop.
- Max of 4 Displays per GPU.



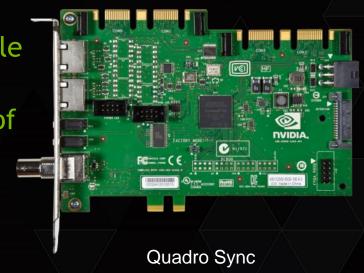

DP MST CLONING

- Showing 3 displays
 - Two are using MST Hub
- Two displays on MST hub are "branching device"
- Select "Multi-Display Cloning"
- After enabled identified as a Clone Group

BUILDING A CLUSTER

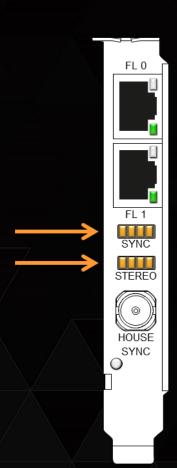
JOIN THE CONVERSATION

#GTC15 **У f** in



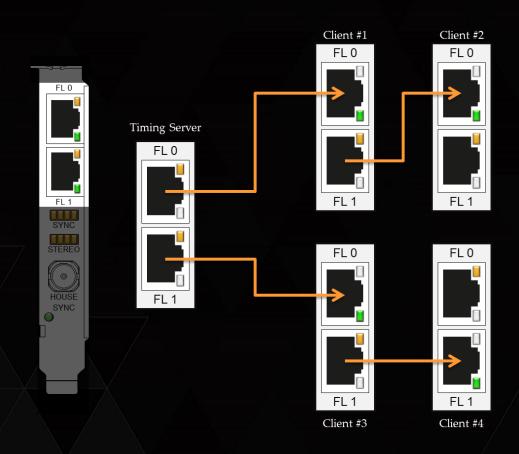
QUADRO SYNC - HARDWARE + SOFTWARE

- Hardware
 - RJ45 Framelock for synchronization of multiple displays to a common internal sync
 - BNC/Genlock Framelock for synchronization of multiple displays to a common external house sync
- Software
 - Requires application to be written with extensions
 - Swap Group and Swap Barrier are OpenGL & DirectX Extensions that provide enhanced synchronization of the graphics swap buffer.



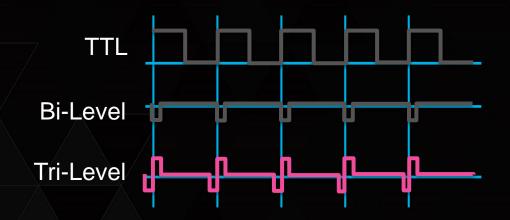
QUADRO SYNC FEATURES

- Increased Swap Barrier Support
 - Up to 25 Quadro Sync cards in single chain.
 - 50 Quadro Sync cards in a cluster
 - ▶ 4 GPUs per Quadro Sync 200 GPUs with Swap Barrier Support
- Sync Delay and Skew settings
 - Ability to adjust sync delay per Quadro card.
- Control via NVAPI
 - public developer version developer.nvidia.com/nvapi
 - Example code on how to control Quadro Sync
- Control via NVSMI
 - Allows remote control across a cluster


BOOTING

- When the board boots after shutdown ALL the Sync and Stereo lights turn Solid Amber, like at the left
 - A reboot will not change the LEDs from the previous state, only a power cycle does
 - The LEDs change to the correct status after the driver loads
- ▶ If there are no LEDs illuminated on system boot, check the power cable

WIRING A CLUSTER

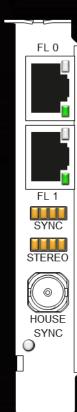


- Connect the nodes with quality
 CAT 5 cables, no longer than they need to be
- Put the timing server in the middle
 - This system should have the stereo connector for active stereo if needed

EXTERNAL SYNC

- 3 Formats of Sync Sources
 - ▶ TTL: 3.3V, 50% duty cycle, high impedance
 - Bi-Level Composite (NTSC/PAL): 75Ω, \pm 300mV
 - ► Tri-Level Composite (HDTV): 75Ω , ± 300 mV

Grass Valley ADVC G4 (bi/tri level) <= 60Hz


Agilent 3350B (TTL, bi/tri level) variable

CHECKING SYNC STATUS

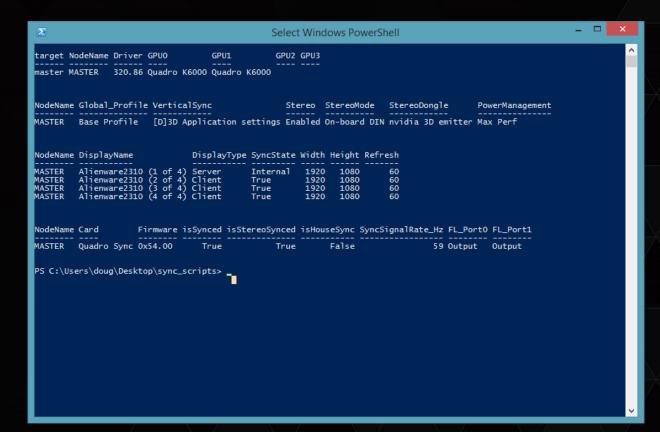
LEDs on the board

- Frame Lock Sync & Stereo Phase per GPU (not display)
- House/External Sync
 - Solid Green Present
- Frame Lock connectors
 - Amber Output
 - Green Input

Control Panel

System Topology Viewer provides per display sync information

= 🌉	automated computer con (1 of 2)			
	Display state	Server		
⊟	Resolution, refresh rate	1920 × 2160 pixels	1920 × 2160 pixels, 49.996 Hz	
		Horizontal (2200)	Vertical (2300)	
i	Active	1920	2160	
	Border	0	0	
	Front porch	13	8	
	Sync width	140	10	
	Back porch	127	122	
	Polarity	Negative (-)	Negative (-)	
	Timing	The display is lock	The display is locked to an internal timing signal	
	EDID source	Monitor	Monitor	
	OS Screen Identifier	1	1	

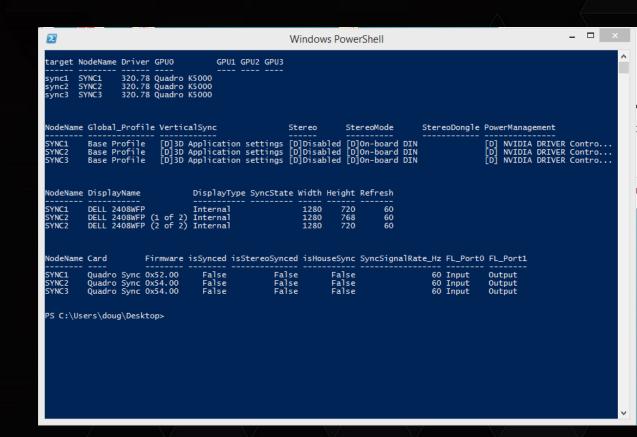

SYNC + POWERSHELL

query_sync.ps1

.\query_sync [-auth] node1 node 2 node 3

-auth - prompt for username/password

node1.. is the list of machines to query.



Contact us at QuadroSVS@nvidia.com if you want a copy of the script

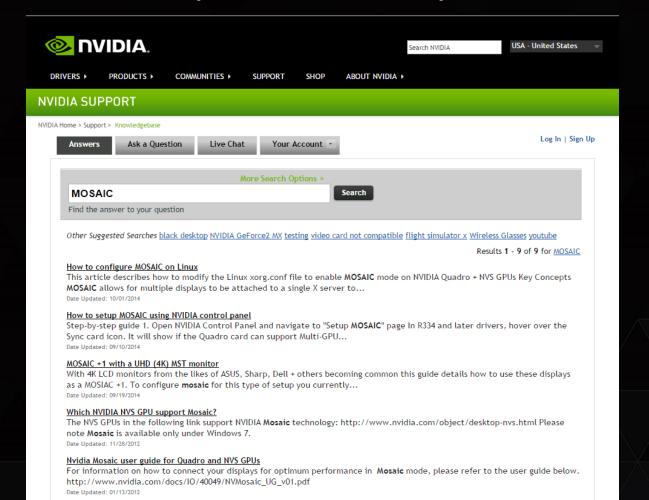
SYNC + POWERSHELL + NVWMI

- Query Sync
- Set Sync on remote machines
- Monitor Sync events
 - Report to log if framelock status changes.

GETTING HELP

JOIN THE CONVERSATION

#GTC15 **y** f in



HTTP://NVIDIA.CUSTHELP.COM/

SDKS + UTILITIES

- OGL/DirectX Swap Group examples
 - QuadroSVS@nvidia.com
- GPU Affinity
 - QuadroSVS@nvidia.com
- Warp + Blend API SDK
 - QuadroSVS@nvidia.com
- NVAPI Sync samples
 - Developer.nvidia.com
- NVAPI MOSAIC samples
 - QuadroSVS@nvidia.com
- NVWMI examples
 - Developer.nvidia.com
 - QuadroSVS@nvidia.com
 - Sync, event monitors, EDID examples

- Configuremosaic
 - Nvidia.com driver downloads
- Nvtimingdiag.exe
 - QuadroSVS@nvdia.com
- Clip MOSAIC perf enhancement
 - QuadroSVS@nvidia.com
- ManageEDID
 - Command line EDID management
 - QuadroSVS@nvidia.com

NVIDIA REGISTERED DEVELOPER PROGRAMS

- Everything you need to develop with NVIDIA products
- Membership is your first step in establishing a working relationship with NVIDIA Engineering
 - Exclusive access to pre-releases
 - Submit bugs and features requests
 - Stay informed about latest releases and training opportunities
 - Access to exclusive downloads
 - Exclusive activities and special offers
 - Interact with other developers in the NVIDIA Developer Forums

REGISTER FOR FREE AT: developer.nvidia.com

SUMMARY

Quadro M6000

MOSAIC

Quadro Sync

THANK YOU

JOIN THE CONVERSATION

#GTC15 **y** f in

