
White Paper ��| �� �SPECviewperf 12 & BENCHMARKING

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 2

TABLE OF CONTENTS

INTRODUCTION 3

DESCRIPTION 3

SYNTHETIC BENCHMARKS 3

BENMARKING GRAPHICS PERFORMANCE 4

SPECVIEWPERF 12 6

CONCLUSION 7

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 3

INTRODUCTION
SPECviewperf® 12 is the latest version of the
SPECviewperf benchmark released by the Standard
Performance Evaluation Committee’s (SPEC)
Graphics Performance Characterization (SPECgpc)
working group. It replaces SPECviewperf® 11, which
was released in June 2010. SPECviewperf 12 includes
updated versions of SPECviewperf 11 tests as
well as new tests to simulate energy and medical
applications. SPECviewperf 12 also includes the first
DirectX® test from the SPECgpc group.

DESCRIPTION
The main features of the SPECviewperf benchmark
is that it is license free, it does not require any third
party software licenses to run, and that it uses
graphics traces -- the list of graphics commands
generated from real applications in an attempt to
simulate graphics workloads that users of those
applications might encounter. This methodology
has both advantages and disadvantages. On the
positive side, anyone can run SPECviewperf. As it
does not require licenses, anyone can download the
benchmark from SPEC and run the test (as long as
the test system meets the minimum requirements
for the benchmark), and compare results for various
workstation configurations. SPEC does have
restrictions as to use of the data for non-members,
details are specified on the SPEC website, at
www.spec.org. A downside to this approach is that
it is not possible for SPECviewperf to completely
simulate an actual application.

SYNTHETIC BENCHMARKS
Synthetic benchmarks are benchmarks designed to
mimic a particular workload. Application benchmarks
would use the actual application, resulting in a
more accurate representation of the workload.
SPECviewperf is a synthetic benchmark. The
graphics traces it uses are taken from an application
and then used by SPECviewperf to replicate the
workload (except for the energy and medical
viewset tests, these are purely synthetic and will
be described in detail later). The trace consists of
the graphics commands used to generate a single

graphics frame for a specific data set using a specific
set of options specified by the application. There
are pros and cons to this approach. On the positive
side, using graphics traces from actual applications
produces a test that features the graphics features
actually used by that application. The downside
to this approach is that SPECviewperf traces only
capture the graphics calls made by the application,
they do not attempt to replicate the applications
actual rendering logic. Consider the following sample
application pseudo code:

In the example above, if the graphics rendering
for each of the “Draw some graphics ()” functions
take 10 seconds to complete, 20 seconds total for
both of them to execute. It would take one day
and 20 seconds for all of this code to execute. If
SPECviewperf were to extract a trace of the graphics
call made from the example above, this trace would
look like the following:

So if this graphics trace were implemented in
SPECviewperf, as the graphics portions take 20
seconds to complete, the test would take about 20
seconds to complete (the original 20 seconds plus
any overhead added by SPECviewperf itself). In this
example, the graphics drawn from the SPECviewperf
test would look the same as the application, but it
would not accurately represent what an end-user
would see with the actual application: the application
takes more than a day to complete, the SPEC test
takes 20 seconds. This is an extreme example,
but it highlights the deficiencies of using only a
graphics trace from an application to replicate what
it does. Using this technique, it’s an approximation
of the workload from the actual application that is

Draw some graphics ();
Sleep for 1 day;
Draw some more graphics stuff ();

Draw some graphics ();
Draw some more graphics stuff ();

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 4

generated; it depends on the actual application
as to how well it replicates the application’s
actual performance.

The following example highlights an additional
issue with the graphics trace method. Consider
the following pseudo code from a
hypothetical application:

If SPECviewperf were to capture the graphics
trace from this application, the pseudo code for
SPECviewperf would look like this:

		 	

As you can see from comparing the two samples
above, there are significant differences. In the
original application code, some computational
operations occur between each rendered frame
of graphics. As SPECviewperf only uses the
graphics traces, this work is not represented in
the benchmark. Another difference in the second
sample, in the SPECviewperf code, you will notice
that the model in the graphics frame is rotated
before each frame is rendered. SPECviewperf tests
manipulate the models for each frame, usually
rotating them, to replicate some kind of graphics
workload. This would be similar to a user moving
the mouse around to arbitrarily rotate a model in an
actual application. As it is highly unlikely many users

sit in front of the computer wiggling the mouse
around to arbitrarily move a model around very
often, the workloads simulated by SPECviewperf
are fairly uncommon. In order to create a benchmark
test, SPECviewperf must insert additional graphics
commands into the original graphics trace to
manipulate the models during the test. These
additional commands are not part of the original
application, adding to the synthetic nature
of SPECviewperf.

Even though SPECviewperf is synthetic, it can
be used along with other tools to help determine
graphics performance. Using other tests, such as
application benchmarks and end user testing can
help create a more complete picture of
graphics performance.

BENCHMARKING GRAPHICS
PERFORMANCE
Using benchmarks to determine graphics
performance is a complex task. It requires the user
to understand the benchmark, its design, what
it measures, how it measures, and to be able to
interpret the results. Benchmarks only measure
what they are designed to measure and these
measurements may be valid for only a specific period
of time. Benchmarks are like any other piece of
software, there may be good benchmarks and some
that are not very good. In some cases, it’s difficult
for an end user to know which benchmarks are most
relevant. The key to understanding benchmarks
and their relevance is to understand the capabilities
of the target hardware and to run multiple tests
and do a detailed interpretation of the results. An
example of comparing benchmarks will illustrate
some techniques that can be used to more fully
understand these techniques.

For our discussion, we will use several benchmarks
to compare two graphics cards, the AMD FirePro™
W5000 and the Nvidia Quadro K2000, designated by
both companies as a mid-range workstation
graphics card.

Until the user quits the application do {

 Draw some graphics and display a frame ();
 Do some computational stuff that takes
 about 10 minutes ();

 } end loop

Until the benchmark test is finished do {

 Rotate the model around before drawing
 next frame ();
 Draw some graphics and display a frame ();

 } end loop

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 5

From the raw specifications, it would appear that the AMD FirePro W5000 would be the faster card as it has a
faster memory interface, more memory bandwidth and can draw more polygons per second than the K2000.
A proper investigation would require we run some benchmarks to test this. For our first test, we will run the
SPECviewperf 11 test. If we compare the performance of the maya-03 test (test with traces taken from Autodesk®
Maya® application), we see the follow results:

The results of this benchmark would run counter to the raw performance data we reviewed before. If we were to
use this single data point, one could conclude that the K2000 demonstrates better performance with the Autodesk
Maya application. SPEC also produces an application benchmark that uses the actual Maya application, so we have
an additional test that we can run. The results from this test for these cards are as follows:

The results from this benchmark are just the opposite, with the AMD FirePro W5000 coming out with the
better score. We can take a look at a third test to help determine the better performing card. If we look at the
SPECviewperf 12 maya-04 test, we see the following results:

Again in this test case, the AMD FirePro W5000 demonstrates higher performance than the K2000 in line with
the assumptions drawn from comparing the specifications of the two cards. Why did SPECviewperf 11 show a
discrepancy? Reviewers will need to run additional tests and analyze the data in detail to understand this. We can
look at another of the SPECviewperf 11 test scores, the lightwave-01 test created from traces from the NewTek™
LightWave application:

Features AMD FirePro™ W5000i Nvidia Quadro K2000ii

Memory Size 2GB GDDR5 2GB GDDR5

Memory Interface 256-bit 128-bit

Memory Bandwidth 102.4 GBps 64 GBps

Polygons / sec 1.65M 1.3M

SPECviewperf 11 AMD FirePro™ W5000 Nvidia Quadro K2000
maya-03iii 72.17 81.26

SPECapc® for Autodesk
Maya 2012

AMD FirePro™ W5000 Nvidia Quadro K2000

Graphics compositeiv 3.17 2.74

SPECviewperf 12 AMD FirePro™ W5000 Nvidia Quadro K2000
Maya-04v 33.08 20.47

SPECviewperf 11 AMD FirePro™ W5000 Nvidia Quadro K2000
Lightwave-01 vi 73.89 80.47

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 6

So a closer examination of SPECviewperf 11 scores
to the corresponding application benchmarks show
significant discrepancies. If you were to rely on
SPECviewperf 11 tests alone to determine graphics
card performance you would end up drawing the
wrong conclusions. This small example with one set
of graphics cards highlights the importance of using
more than a single test to determine graphics card
performance and carefully analyzing the results to
make sure that the conclusions drawn from the tests
are correct.

SPECVIEWPERF 12
We have seen that SPECviewperf 11 results did
not correlate well with expected raw graphics
card performance or benchmarks testing the
actual applications traced by SPECviewperf. Is
SPECviewperf 12 any better? It is substantially
different than its predecessor. After SPECviewperf
11, the benchmark was re-architected to decouple
the actual tests and data from the test framework.
This design provides for several benefits. First,
it allows for viewsets (the individual tests) to
be submitted individually. SPECviewperf 11 was
created by a single member of the SPEC committee
with little ability for other committee members
to contribute or review the benchmark dataset
source or raw trace data. SPECviewperf 12 consists
of viewsets submitted from several committee
members, each submitting full source code for the
tests that can be easily reviewed by all committee
members. Additionally, SPECviewperf 12 traces are
taken from the latest versions of the applications.
SPECviewperf 11 was released in 2010, with software
vendors commonly releasing update versions on an
annual basis. SPECviewperf 11 traces are three or

more versions behind the currently shipping versions
of those applications. SPECviewperf 12 also includes
the first DirectX test with traces taken from the
Autodesk Showcase® application. There are also
tests designed to emulate workloads for energy
and medical volumetric viewing applications. These
viewsets are entirely synthetic; they were not traced
from any specific application, being submitted as
original source code by NVIDIA.

If we compare the two graphics cards discussed
earlier, the AMD FirePro™ W5000 and the NVIDIA
Quadro K2000, looking at the results from
SPECviewperf 12 and any corresponding SPECapc
application benchmarks, we can see if SPECviewperf
12 is doing a better job with respect to its scores
corresponding to the application tests than
SPECviewperf 11. Here are the SPECviewperf 12 test
scores for each cardviii:

But if we compare this score with the SPECapc LightWave 9.6 benchmark that uses the actual application to
measure performance we get the following results:

SPECapc LightWave 9.6 AMD FirePro™ W5000 Nvidia Quadro K2000
Interactivevii 3.55 3.45

SPEC
Viewperf 12

AMD FirePro
W5000

Nvidia Quadro
K2000

catia-04 36.52 20.49

creo-01 27.78 21.41

energy-01 0.50 0.41

maya-04 35.65 20.46

medical-01 11.23 6.42

showcase-01 23.54 12.92

snx-02 46.67 20.38

sw-03 50.71 34.81

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 7

As we see in the chart, the AMD FirePro ™
W5000 outperforms the Quadro K2000 for all
of the SPECapc application benchmarks as well.
SPECviewperf 12 is doing a much better job at
indicating how a graphics card will perform with
actual applications than SPECviewperf 11.

CONCLUSION
SPECviewperf12 is a welcomed update to the
SPECviewperf benchmark. SPECviewperf 11 is
showing its age in many ways: scores do not
correlate well with actual application performance;
it does not exhibit good scaling between GPUs of
varying performance levels; and the traces used are
3 to 4 years old or older, so they do not represent
the latest versions of the applications very well.
SPECviewperf 12 with its newer application traces
and heavier testing of raw GPU performance
provides users with a much better performance
testing tool. No single benchmark can provide all
the answers with respect to GPU performance.
Using synthetic benchmarks like SPECviewperf 12,

in combination with application benchmarks and
end-user testing, can help provide a more complete
picture as to the actual GPU performance and end
user will realize in their environment. Benchmark
testing requires a thorough understanding of the
hardware and benchmarks being tested, running
multiple benchmarks over multiple iterations
and configurations, and careful analysis of the
resulting data. SPECviewperf 12, in combination
with application and end user benchmarks, can be a
valuable part of the benchmarking toolkit for those
investigating GPU performance.

AMD, the AMD Arrow logo, and FirePro are
trademarks of Advanced Micro Devices, Inc. SPEC
and SPECviewperf are trademarks of Standard
Performance Evaluation Corporation. DirectX is a
registered trademark of Microsoft Corporation in the
U.S. and/or other jurisdictions. Other names are for
informational purposes only and may be trademarks
of their respective owners.

In SPECviewperf 12, the AMD FirePro™ W5000 outperforms the NVIDIA Quadro K2000 for all subtests. In order
to check this against application level benchmarks, SPEC currently has application benchmarks for Autodesk
Maya, Siemens PLM NX, PTC Creo, and Dassault Systemes SolidWorks. We can use these tests to see how well
SPECviewperf 12 scores correlate to the results from application level benchmarks. The results of the graphics
composite scores for these benchmarks are listed in the chart belowix:

6.00

5.00

4.00

3.00

2.00

1.00

0.00

SPECapc for Autodesk Maya
2012 GFX Composite

SPECapc for Siemens PLM
NX8.5 Gfx Composite

SPECapc for PTC Creo 2.0
Gfx Composite

SPECapc for SolidWorks 2013
Gfx Composite

FirePro W5000 Quadro K2000

WHITE PAPER: SPECviewperf 12 & BENCHMARKING 8

i Source: http://www.amd.com/US/PRODUCTS/WORKSTATION/GRAPHICS/ati-firepro-3d/W5000/Pages/w5000.aspx

ii Source: http://www.nvidia.com/object/quadro-desktop-gpus.html

iii SPECviewperf 11; test configuration: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, AMD 9.003.3 driver for W5000, Nvidia 311.35 driver for K2000

iv SPECapc for Autodesk Maya 2012 SP1 benchmark; test configuration: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, AMD 9.003.3 driver for W5000, Nvidia 311.35 driver for K2000

v SPECviewperf 12; test configuration: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, AMD 13.152.4 driver for W5000, Nvidia 331.82 driver for K2000

vi SPECviewperf 11; test configuration: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, AMD 9.003.3 driver for W5000, Nvidia 311.35 driver for K2000

vii SPECapc for NewTek LightWave 9.6; test configuration: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, AMD 9.003.3 driver for W5000, Nvidia 311.35 driver for K2000

viii SPECviewperf 12; test configuration: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, AMD 13.25.18.1 driver for W5000, Nvidia 331.82 driver for K2000

ix Test system: Intel Xeon E-1660@ 3.3GHz, Windows 7 Professional 64-bit SP1, Nvidia driver 331.65 for K2000, AMD driver 12.152.4 for W5000;

©2014 Advanced Micro Devices, Inc. All rights reserved. AMD, AMD Radeon, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft, Windows, Windows Vista and DirectX are registered trademarks of Microsoft. Other
names are for informational purposes only and may be trademarks of their respective owners. PID 54525-A

