

AMD FIREPRO

Heterogeneous system architectures from APUs to discrete GPUs

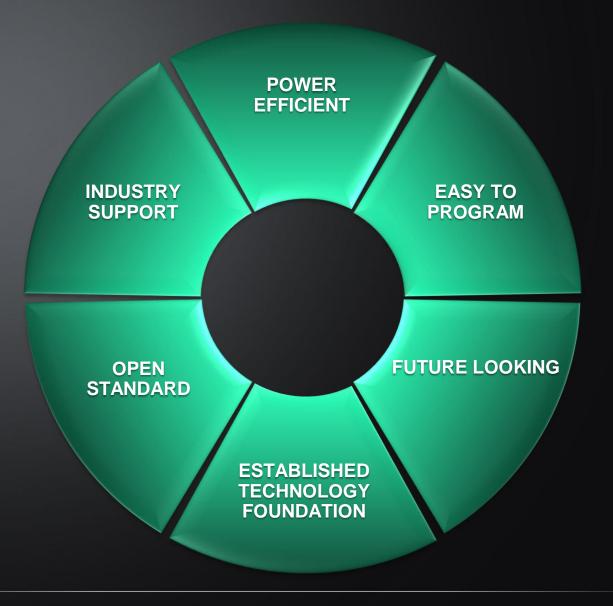
April 2013 Confidential – NDA Required

Most parallel code runs on CPUs designed for scalar workloads

WASTES POWER

CHANGING THE THINKING

Typically platform builders create innovative new hardware and offer an API for software to access it That tired thinking has only ever had niche success!


HSA BRINGS THE PLATFORM TO THE PROGRAMMER

HETEROGENEOUS SYSTEM ARCHITECTURE

Brings All the Processors in a System into Unified Coherent Memory

EVOLUTION OF HETEROGENEOUS COMPUTING

Architecture Maturity & Programmer Accessibility

Proprietary Drivers Era

Graphics & Proprietary Driverbased APIs

- "Adventurous" programmers
- Exploit early programmable "shader cores" in the GPU
- Make your program look like "graphics" to the GPU
- CUDA™, Brook+, etc

Standards Drivers Era

OpenCL™ /DirectCompute **Driver-based APIs**

- **Expert programmers**
- C and C++ subsets
- Compute centric APIs, data types
- Multiple address spaces with explicit data movement
- Specialized work queue based structures
- Kernel mode dispatch

Heterogeneous™ System **Architecture GPU Peer Processor**

- Mainstream programmers
- Full C++
- GPU as a co-processor
- Unified coherent address space
- Task parallel runtimes
- Nested Data Parallel programs
- User mode dispatch
- Pre-emption and context switching

HSA FEATURE ROADMAP

FIREPRO GRAPHICS

2011

2012

2013

2014

Physical Integration

Optimized Platforms

Architectural Integration

System Integration

Integrate CPU & GPU in silicon

GPU Compute C++ support

Unified Address Space for CPU and GPU

GPU uses pageable

system memory via

GPU graphics pre-emption

GPU compute

context switch

Unified Memory Controller

User mode schedulng

CPU pointers

Quality of Service

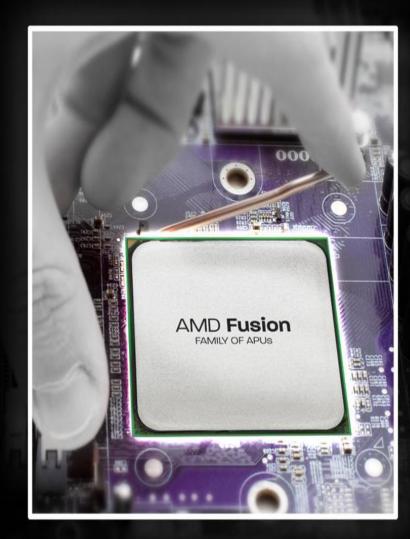
Common Manufacturing Technology Bi-Directional Power Mgmt between CPU and GPU

Fully coherent memory between CPU & GPU

Extend to Discrete GPU

THE OPPORTUNITY WE ARE SEIZING

Make the unprecedented processing capability of the APU as accessible to programmers as the CPU is today.



APU: ACCELERATED PROCESSING UNIT

The APU has arrived and it is a great advance over previous platforms

- Combines scalar processing on CPU with parallel processing on the GPU and high bandwidth access to memory
- How do we make it even better going forward?
- Easier to program
- Easier to optimize
- Easier to load balance
- Higher performance
- Lower power

APU AND DISCRETE GPU

Heterogenous architecture APU + discrete GPU

APU Chip DDR3 DIMM Memory GPU Chip GPU GPU -27 GB/sec PCIe

- 3X bandwidth between GPU and memory
- Eliminate latency and power associated with the extra chip crossing

FEATURE RICH GPU

AMD FirePro S9000 3.23 TFlops SP / 806 **High Performance GFLops DP** 264 Gb/s **High Bandwidth** 6Gb GDDR5 **Execute simultaneous Ambidextrous Multitasking** compute and 3D graphics tasks **GPU** can execute tasks **Self execution Control** by itself **Memory protection ECC**

COMMITTED TO OPEN STANDARDS

- AMD drives open and de-facto standards
 - Compete on the best implementation
- Open standards are the basis for large

ecosystems

- Open standards always win over time
 - SW developers want their applications to run on multiple platforms from multiple hardware vendors

OPENCLTM FOR NOW AND FOR LONG

OPENCL is the STANDARD in the INDUSTRY today

TOSHIBA

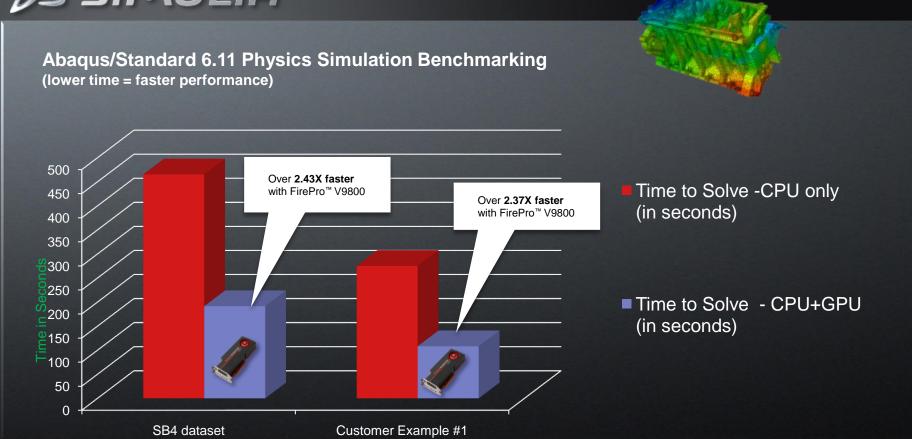
. . .

AMD

Many popular applications benefiting from OpenCL™ More in the pipeline...

AccelerEyes Jacket (for Matlab)	Adobe Photoshop CS6	Adobe Premiere Pro CS6	ArcSoft Link+	Arcsoft MediaConverter	Arcsoft Media Impression	ArcSoft Panorama Maker Pro
ArcSoft ShowBiz	Arcsoft TotalMedia Theater	Arcsoft Webcam Companion	ANSYS Fluent	Assimilate Scratch	Autodesk Maya 2012 (Bullet Physics)	Autodesk Moldflow
BaoFeng Storm Player	Blender Blender	Corel VideoStudio Pro	Corel WinZIP	CyberLink PowerDirector	Dassault Systemes SIMULIA Abaqus/Standard	Dem Solutions EDEM
eyeon Fusion	GIMP	Handbrake	MainConcept H.264/AVC Pro Encoder	MotionDSP Ikena	MotionDSP vReveal	Nuvixa Stage Presence
Open Cascade	OPTIS THEIA RT	Paraken Musemage	Rovi TotalCode	Side Effects Software Houdini	Sony Software Movie Studio HD	Sony Software Vegas Pro
Viewdle Photo Uploader Wolfram Mathematica						

OpenCL



PERFORMANCE GAINS WITH OPENCL™ AND AMD GRAPH

(VS. CPU ONLY)

ÓS SIMULIA

Testing conducted on a Dell T7400 w/ Intel Xeon E5405 CPU, 64GB RAM, Red Hat® OS v5.5 by Dassault Systemes, ATI FirePro™ V9800, AMD Catalyst Pro 10.12, Dassault Systemes SIMULIA ® Abaqus/Standard 6.11 OpenCL™ is a trademark of Apple Inc., and is used with permission from Khronos.

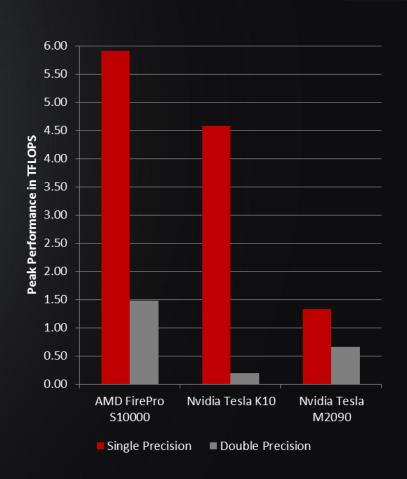
AMD FirePro™ S10000 Server GPGPU High Density / High Performance GPU Computing

8 GPU computing cards - 16 GPUs
11.84 TFLOPS peak double precision performance
47.28 TFLOPS peak single precision performance
1 Exxact GPU computing server

AMD FirePro™ S10000

- Dual Ultra High-End GPUs
- 6GB GDDR5
- 480 GB/s memory bandwidth
- 5.91 TFLOPS peak SPFP
- 1.48 TFLOPS peak DPFP
- 375W max power
- ECC memory support

World's Most Powerful GPU Computing Card



AMD FIREPRO™ S10000 SERVER GRAPHICS

High Performance and High Efficiency

- Highest single precision and dual precision floating point performance of any professional graphics solution³
 - 5.91 TFLOPS peak SPFP
 Vs. Nvidia K10 at a max of 4.58 TFLOPS
 peak SPFP
 - 1.48 TFLOPS peak DPFP
 Vs. Nvidia M2090 at a max of 0.665
 TFLOPS peak DPFP
- Highest double precision / watt performance⁴:
 - 3.94 GFLOPS/Watt
 Vs. Nvidia M2090 at 2.96 GFLOPS/Watt

AMD FIREPRO™ S10000 SERVER GRAPHICS

Industry Leading Compute Performance

The most powerful server graphics card ever created

- Up to <u>5.91 TFLOPS</u> peak single precision performance and <u>1.48 TFLOPS</u> peak double precision performance
- Up to <u>2.2X</u> as fast as the M2090
- Up to 7.8X as fast as the K10 for peak double precision and 1.3X as fast for peak single precision³
- Delivers up to <u>1.5X</u> the memory bandwidth as K10⁵

	AMD FirePro™ S10000	Nvidia Tesla K10	Nvidia Tesla M2090
ASIC Model	Tahiti (2x)	GK104(2x)	GF110(1x)
Form Factor	FH/FL Dual-slot	FH/FL Dual-slot	FH/FL Dual-slot
Core Clock Speed	825 Mhz	745 Mhz	650 Mhz
Cores (total)	3584	3072	512
Max Power	375W	225W	225W
Peak Single Precision	5.91 TFLOPS	4.58 TFLOPS	1.331 TFLOPS
Peak Double Precision	1.48 TFLOPS	0.19 TFLOPS	0.67 TFLOPS
Memory Size (total) / Type	6GB GDDR5	8GB GDDR5	6GB GDDR5
Memory Interface	384-bit	256-bit	384-bit
Memory Bandwidth (total, ECC off)	480 GB/s	320 GB/s	177 GB/s
ECC Memory Support	Yes	Yes	Yes
PCI Express®	X16, 3.0	X16, 3.0	X16, 2.0

AMD FIREPRO[™] **SERVER GRAPHICS**Product Family Comparison

	AMD FirePro™ S10000	AMD FirePro™ S9000	AMD FirePro™ S7000
ASIC Model	Tahiti (2x)	Tahiti	Pitcarin
Form Factor	FH/FL Dual-slot	FH/FL Dual-slot	FH/FL Single-slot
Core Clock Speed	825 Mhz	900 Mhz	950 Mhz
Total Cores	3584	1792	1280
Max Power	375W	225W	150W
Peak Single Precision	5.91 TFLOPS	3.23 TFLOPS	2.4 TFLOPs
Peak Dual Precision	1.48 TFLOPS	806 GFLOPS	152 GFLOPS
Memory Size / Type	6GB GDDR5	6GB GDDR5	4GB GDDR5
Memory Interface	384-bit	384-bit	256-bit
Memory Bandwidth	480 GB/S	264 GB/s	154GB/s
PCI Express®	3.0	3.0	3.0
Display Output	4x DisplayPort 1x DVI	1x DisplayPort	1x DisplayPort
Part Numbers	100-505779 (Retail) 100-505772 (OEM)	100-505748	100-505749

FirePro S7000

3x Single Precision

2x Memory Bandwidth

FirePro \$9000 \$1000

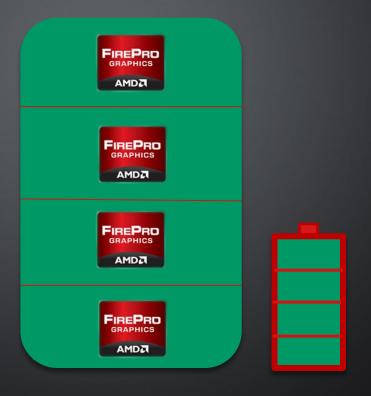
3x Double Precision

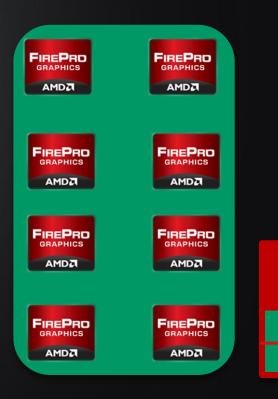
High Density

BEST GPU DENSITY

Most efficient HW architecture and performance

High Density system supported


System	GPU Cards	Total SP <u>Tera</u> -FLOPS
Tyan FT72B7015	8 x S10000	47.28
Asus ESC400 G2	2 x S10000	11.82
Dell R720	4 x S7000	9.6
Dell T620	4 x W7000	9.73
Dell PEC 8220	16 x S9000	51.68
SuperMicro	4 x S9000	12.92
Tyan	8 x S10000	47.28


HIGH DENSITY

Reduce power and cost and increase performance

4 x S9000 GPU / server 13 TFlops SP 3.2TFlops DP

4 x S10000 GPU / server 23.6 TFlops SP 5.92TFlops DP

AMD AMBIDEXTROUS WITH HSA

Different solutions for each workflows

APU

Low Power

High Density

GPU

High End GPU
Dual GPU card
High GPU density

- High Performance/Watt/\$ ratio
- Balanced CPU/GPU
- Flexible workflows

Ultra High Performance/Watt/\$ ratio
High Performance parallel workflows

- OpenCL
- OpenMP with PGI, gcc
- Java, Pyhton
- Scientific Libraries

Developer Tools

