
OpenDisplayXR Development Status
By Andrew Hazelden <andrew@andrewhazelden.com>
2023-02-19

This document outlines the OpenDisplayXR project's initial research findings and lists the ongoing

development efforts.

Over the last month, I spent a considerable amount of time reviewing the SteamVR, OpenVR, and

OpenXR SDKs. I read countless pages of technical documentation to find reference material that

covers the creation of virtual device drivers.

I also explored the NVIDIA InstantNGP NeRF toolset which added VR HMD connectivity support,

created an initial Blackmagic Fusion Studio settings file for the 3Dconnexion SpaceMouse Enterprise

input device, used NewTek NDI IP video streaming technology with software like (NDI Tools, Resolve +

Nobe Display NDI, Unity3D + KlackNDI, and TouchDesigner).

I also read about OpenGL and DirectX based quadbuffer stereo rendering, and looked into embedded

scripting APIs like LuaJIT.

Virtual Device Drivers
Included below is a detailed summary of HMD (Head Mounted Display) APIs, with information and

links that discuss their support for virtual display drivers.

SteamVR SDK

Valve Software | SteamVR | Virtual Display

https://github.com/ValveSoftware/virtual_display

SteamVR supports a virtual device driver through the use of the "IVRVirtualDisplay'' interface. This

allows OpenVR to function with simulated HMDs. This makes it possible to directly capture the

rendered output, and supports wireless transport of the final framebuffer data, too.

OpenVR SDK

OpenVR Driver Sample Code

OpenVR provides source code for a sample HMD driver and controller interface:

https://github.com/ValveSoftware/openvr/tree/master/samples/drivers/drivers/simplehmd

mailto:andrew@andrewhazelden.com
https://www.steamvr.com/en/
https://github.com/ValveSoftware/openvr
https://www.khronos.org/OpenXR/
https://github.com/NVlabs/instant-ngp#vr-controls
https://3dconnexion.com/ca/software-developer-program/
https://www.ndi.tv/tools/
https://luajit.org/luajit.html
https://github.com/ValveSoftware/virtual_display
https://github.com/ValveSoftware/openvr/tree/master/samples/drivers/drivers/simplehmd

Valve Software | OpenVR | Driver Manifest Wiki Page

The Driver Manifest wiki page explains the syntax of a JSON file named "driver.vrdrivermanifest" that

lives inside the driver folder:

https://github.com/ValveSoftware/openvr/wiki/DriverManifest

The JSON based "hmd_presence" attribute defines how the connection of an HMD device is

detected. For a passive stereo 3D display, the value "*.*" would be used to return a true logic state

back to SteamVR's VR_IsHmdPresent() function. This would indicate the display is enabled and

available for use.

Valve Software | OpenVR | Driver Documentation Wiki Page

Driver Documentation wiki page summarizes the steps required to create a new OpenVR driver:

https://github.com/ValveSoftware/openvr/wiki/Driver-Documentation

Valve Software | OpenVR | Input Profiles Wiki Page

Input profiles are used by OpenVR compatible application software to bind user actions to the

available hardware input devices.

https://github.com/ValveSoftware/openvr/wiki/Input-Profiles

An input profile supports the definition of a controller type, input source, binding mode, pose. Input

profiles can represent inputs such as HMDs and hand controllers, console-style game-pad controllers,

joysticks, trackpads, buttons, and haptics.

Valve Software | OpenVR | Issues | IVRVirtualDisplay

A detailed outline is provided on the OpenVR Issues page for the process of creating a custom device

driver:

https://github.com/ValveSoftware/openvr/issues/507#issuecomment-450281723

Khronos OpenXR SDK
OpenXR uses extensions to add support for new devices, form factors, and view configurations. This

allows vendors to expand upon the core OpenXR API functionality.

The Khronos Group allows non-members to create their custom OpenXR extensions that exist outside

of the "Khronos IP Zone". This means no NDAs are required, and Khronos membership fees do not

need to be paid by third-party developers.

https://github.com/ValveSoftware/openvr/wiki/DriverManifest
https://github.com/ValveSoftware/openvr/wiki/Driver-Documentation
https://github.com/ValveSoftware/openvr/wiki/Input-Profiles
https://github.com/ValveSoftware/openvr/issues/507#issuecomment-450281723

The OpenXR SDK is accessible via GitHub:

https://github.com/KhronosGroup/OpenXR-SDK

One can register a custom OpenXR extension "author ID" via the OpenXR GitHub repo. An extension

ends the author ID with "X" to mark it as an in-development item.

The OpenXR Working Group explains the extension creation process here:

https://registry.khronos.org/OpenXR/specs/1.0/extprocess.html

A description of the registration process is viewable in the wiki:

https://github.com/KhronosGroup/OpenXR-Docs/blob/401caaf0e02e5b9c994dde10e90e77fd5238af

03/specification/sources/styleguide/extensions.adoc#registering-extensions

The official registry of OpenXR SDK extensions are visible in the following XML document:

https://github.com/KhronosGroup/OpenXR-SDK-Source/blob/main/specification/registry/xr.xml

An XML based OpenXR registry entry would look like:

<tag name="ODX" author="OpenDisplayXR Experimental" contact="Andrew Hazelden"/>
<extension name="XR_ODX_extension_500" number="500" type="instance" supported="disabled">

<require>
<enum value="1" name="XR_ODX_extension_500_SPEC_VERSION"/>
<enum value=""XR_ODX_extension_500"" name="XR_ODX_extension_500_EXTENSION_NAME"/>
</require>

</extension>

OpenXR Forums | Custom Viewport Configurations

A friend, Matthew Dougherty, from the NOAA (National Oceanic and Atmospheric Administration)

communicated on the OpenXR community forum back in November 2021. He inquired about the

possibility of creating custom OpenXR viewport configurations.

https://community.khronos.org/t/projection-caves-openxr-spec/108002

Matthew Dougherty had his questions answered by the Khronos Group member Ryan Pavlik, the

developer of an open-source OpenXR rendering toolset called Monado:

https://monado.freedesktop.org/

NVIDIA CloudXR SDK
The NVIDIA CloudXR SDK allows a remote cloud-based workstation to host a live rendered

stereoscopic 3D HMD session via a virtual device driver:

https://docs.nvidia.com/cloudxr-sdk/index.html

https://github.com/KhronosGroup/OpenXR-SDK
https://registry.khronos.org/OpenXR/specs/1.0/extprocess.html
https://github.com/KhronosGroup/OpenXR-Docs/blob/401caaf0e02e5b9c994dde10e90e77fd5238af03/specification/sources/styleguide/extensions.adoc#registering-extensions
https://github.com/KhronosGroup/OpenXR-Docs/blob/401caaf0e02e5b9c994dde10e90e77fd5238af03/specification/sources/styleguide/extensions.adoc#registering-extensions
https://github.com/KhronosGroup/OpenXR-SDK-Source/blob/main/specification/registry/xr.xml
https://community.khronos.org/t/projection-caves-openxr-spec/108002
https://monado.freedesktop.org/
https://docs.nvidia.com/cloudxr-sdk/index.html

CloudXR is capable of working with SteamVR and OpenVR applications on a remote server. The

CloudXR approach to left and right eye view stereo 3D rendering does not require quadbuffer stereo

support on Amazon AWS EC2 compute instances.

Embeddable Scripting APIs
If a virtual device driver wants to support the use of arbitrary input devices in a "VR" like rendering

environment, having a high-performance scripting API becomes useful. This allows the use of scripts

to act as real-time input value remapping tools that can transform the meaning of raw HID (Human

Interface Device) based input data.

In January I received technical assistance from a friend, Marcel Gandriau, a software developer based

in France. Marcel helped prepare a makefile and resources that enabled me to compile and embed

the LuaJIT interpreter as a shared library inside of a C/C++ based plugin API.

3DConnexion SpaceMouse Enterprise
In January I created a detailed 3DConnection settings file for Blackmagic Design's Fusion Studio

compositing software. The configuration file allows one to use the SpaceMouse Enterprise to drive a

majority of the tasks one would normally carry out in the node-based visual effects software.

https://drive.google.com/drive/folders/1HF6_M0TfD5K8w0kdve6OvRF0CA7EcaWu

Figuring out the syntax used in the 3DxSmartUI software's zipped XML based settings file took a lot of

trial and error based experimentation. The challenge was that not all of the parameters can be

configured using the control software's user interface on Windows, and those attributes are also not

defined clearly in official end-user delivered documentation.

A lot of hunting on the 3DConnection user forum for posts by the site moderator "@jwick" was

required before the exact details on the mouse input parameters for the "AxisBank" tags like

"HIDMultiAxis_Ry", "HIDMultiAxis_Rx", and the modifier keys were discovered.

A significant number of customers have commented on the official 3DConnection forums that the

current 3DxSmartUI's toolset makes it unnecessarily difficult to define the additional hotkey and

mouse button modifiers one needs to activate when driving the viewport in 3rd party software

packages.

After going through this experience myself, I think it is worth commenting that a lot of SpaceMouse

products go underutilised by end-users after an initial purchase period. This hurts the product's

uptake and reputation.

OSC Messaging API
OSC (OpenSoundControl) is a messaging protocol that transmits multimedia centric input data from

devices like MIDI hardware over a network. This provides a convenient way to bridge live information

from music synthesizers, haptic input devices, and computer systems to a remote host.

Software like TouchOSC makes it possible to create custom touchscreen based GUIs that can be used

to drive OSC message passing.

https://en.wikipedia.org/wiki/Open_Sound_Control
https://hexler.net/touchosc

OSC support is an attractive feature to implement in an HMD centric virtual device driver based input

profile as OSC can transparently bridge access to a wide range of input hardware.

NewTek NDI IP Video Streaming
NewTek's NDI (Network Device Interface) protocol provides broadcast quality IP video streaming. NDI

is available as both a software and hardware based implementation. NDI encoded video can be

transported over conventional Ethernet, WiFi, or fibre based networking hardware.

NDI is an attractive IP based video transport technology for streaming immersive content to a

multi-display panel centric hardware device like a Schneider Digital smart VR-Wall.

As part of my OpenDisplayXR development process I explored the following NDI implementations:

https://en.wikipedia.org/wiki/Network_Device_Interface
https://www.schneider-digital.com/de/produkte/vr-walls/

NDI Tools
The NDI Tools are available as a free download. It provides Windows and macOS users with a

common set of base utilities to capture and playback NDI video streams on a conventional desktop

system.

The "Video Monitor" program allows you to display NDI video feeds that are accessible on your local

network subnet. Multiple concurrent NDI video streams can be played back on the same workstation.

By right-clicking on the contextual menu icon you can select the exact video stream you would like to

view.

https://www.ndi.tv/tools/

Unity3D Game Engine
Unity3D based game developers can install the free KlakNDI package. This package adds NDI sender

and receiver features to Unity scenes.

The KlakNDI plugin makes it possible to transmit a game view in real-time as an NDI IP video stream,

or you can capture an external NDI stream and apply it to a Unity based texture map.

https://unity.com/
https://github.com/keijiro/KlakNDI

The "test" example Unity scene file shows 4 concurrent NDI streams playing back at the same time. A

contextual menu allows you to select an external NDI feed that is displayed in the first viewer cell.

NDI streaming approaches can be used to broadcast real-time rendered geospatial output from

addons like the Cesium for Unity plugin. The Cesium GitHub page hosts the download for the unity

integration addons.

https://cesium.com/platform/cesium-for-unity/
https://github.com/CesiumGS/cesium-unity-samples/releases/tag/v0.2.0

Derivative TouchDesigner
The TouchDesigner real-time node based graphics environment allows you to work with NDI in/NDI

out nodes with the same ease and elegance as movie/image sequences, traditional video capture

devices, or HDMI display outputs.

https://derivative.ca/download

"NDI in" and "NDI out" nodes can be added to a Touchdesigner project by pressing the TAB key. Then

you can click on the TOP node and it is inserted into the node graph. You can then customize the

name of the IP video stream in the node's settings.

This image shows the default sample TouchDesigner project, with an NDI out node added to the end

of the node graph.

TouchDesigner's node graph provides a visual interface to apply post-processing effects to real-time

media that passes through the composite. This makes it possible to reformat media, apply visual

effects, render 3D meshes, perform warping or panoramic image stitching, or to process stereoscopic

3D footage on-the-fly.

DaVinci Resolve
Blackmagic Design's DaVinci Resolve Studio software is a video editing and color correction

environment. Resolve's Edit and Color pages can be used inside an NDI based workflow with the

addition of the OpenFX based Nobe Display NDI plugin that is dragged onto a timeline based item in

the Edit page.

The NobeDisplay program runs in the background. It is used to connect to the DaVinci Resolve

timeline based OpenFX plugin.

https://www.blackmagicdesign.com/products/davinciresolve/studio
https://timeinpixels.com/nobe-display/

NVIDIA InstantNGP (NeRF)
NVIDIA's InstantNGP software has recently added support for stereoscopic 3D rendering of NeRF

(Neural Radiance Field) scenes. This is possible via newly added HMD bindings. It is also possible to

generate rectilinear, fisheye, and equirectangular image projection based offline movie renderings

from the toolset.

https://github.com/NVlabs/instant-ngp#vr-controls

A recent update has made it possible for InstantNGP projects to be imported and exported using a

single file based redistributable format called an ".ingp" file. This document format allows users to

deliver compact and efficiently compressed 3D explorable NeRF datasets. One can drag and drop an

.ingp file or a "transform.json" file from an Explorer based desktop folder into the InstantNGP

window and it will be instantly opened.

Neural radiance field rendering approaches work well for reconstructing and rendering scenes that

contain high amounts of vegetation with thin branches and leaf structure. It also excels with outdoor

environments that have details like reflective & refractive water, and for architectural use cases with

office towers that have glass windows that are both transparent, and also reflective with a mirror like

finish at certain viewing angles.

